COMP 330: Relational Databases 1

Chris Jermaine and Kia Teymourian
Rice University
What is a Database?

A collection of data

Plus, a set of programs for managing that data
Back in the Day...

The dominant data model was the network or navigational model (60’s and 70’s)

Data were a set of records with pointers between them

Much DB code was written in COBOL

Big problem was lack of physical data independence

- Code was written for specific storage model
- Want to change storage? Modify your code
- Want to index your data? Modify your code
- Led to very little flexibility

▷ Your code locked you into a physical database design!
Some People Realized This Was a Problem

By 1970, EF Codd (IBM) was looking at the so-called relational model

- Led to the 1981 Turing Award
 - Highest honor a computer scientist receives
 - Analogous to a Nobel Prize

Idea: data stored in “relations”

- A relation is a table of tuples or records
- Attributes of a tuple have no sub-structure (are atomic)

No pointers!
Querying in the Relational Model

Querying is done via a “relational calculus”

Declarative

• You give a mathematical description of the tuples you want
• System figures out how to get those for you

Why good?

• Data independence!
• Your code has no data access specs
• So can change physical org, no code re-writes
Relation Schema

All data are stored in tables, or relations

A relation schema consists of:

- A relation name (e.g., LIKES)
- A set of (attribute_name, attribute_type) pairs
 - Each pair is referred to as an “attribute”
 - Or sometimes as a “column”
- Usually denoted using LIKES (DRINKER string, BEER string)
- Or simply LIKES (DRINKER, BEER)
A Relation

A relation schema defines a set of sets

- Specifically, if $T_1, T_2, ..., T_n$ are the n attribute types
- Where each T_i is a set of possible values
 - Ex: string is all finite-length character strings
 - Ex: integer is all numbers from -2^{31} to $2^{31} - 1$
- Then a realization of the schema (aka a “relation”) is a subset of
 - $T_1 \times T_2 \times ... \times T_n$
 - where \times is the Cartesian product operator
A Relation (continued)

So for the relation schema LIKES (DRINKER string, BEER string)
A corresponding relation might be

\{(“Chris”, “Taddy Porter”), (“Kia”, “Pabst Blue Ribbon”)\}

This is also referred to as a “table”

The entries in the relation are referred to as

- “rows”
- “tuples”
- “records”
Keys

In the relational model, given $R(A_1, A_2, \ldots, A_n)$

A set of attributes $\mathcal{K} = \{K_1, \ldots, K_m\}$ is a KEY of R if:

- For any valid realization R' of R...
- For all t_1, t_2 in R'...
 - If $t_1[K_1] = t_2[K_1]$ and $t_1[K_2] = t_2[K_2]$ and ... $t_1[K_m] = t_2[K_m]$...
 - Then it must be the case that $t_1 = t_2$

Note: every relation schema MUST have a key... why?

What is a key for LIKES (DRINKER, BEER)?

What is a key for STUDENT (NETID, FNAME, LNAME, AGE, COLLEGE)?
Keys (continued)

A relation schema can have many keys
One is typically designated as the PRIMARY KEY
Denoted with an underline

- STUDENT (\texttt{NETID, FNAME, LNAME, AGE, COLLEGE})
Foreign Keys

The relational model does not have pointers

Why? Two reasons:

- Not nice mathematically
 ▶ Mathematical elegance key goal in model design

- Implementation difficult
 ▶ Move an object? All pointers are invalid!
 ▶ Can have centralized look-up table
 ▶ But expensive, plus problem still exists
Foreign Keys (continued)

But we still need some notion of between-tuple references

- LIKES (DRINKER, BEER)
- DRINKER (DRINKER, FNAME, LNAME)
- Clearly, LIKES.DRINKER refers to DRINKER.DRINKER

Accomplished via the idea of a FOREIGN KEY
Foreign Keys (continued)

- LIKES (DRINKER, BEER)
- DRINKER (DRINKER, FNAME, LNAME)

Given relation schemas R_1, R_2

- We say a set of attributes K_1 from R_1 is a foreign key to a set of attributes K_2 from R_2 if...
- (1) K_2 is a candidate key for R_2, and...
- (2) For any valid realizations R'_1, R'_2 of R_1, R_2...
- For each $t_1 \in R'_1$, it MUST be the case that there exists $t_2 \in R'_2$ s.t...
 - $t_1[K_1] = t_2[K_1]$ and $t_1[K_2] = t_2[K_2]$ and ... $t_1[K_m] = t_2[K_m]$

Intuitively, what does this mean?
Queries/Computations in the Relational Model

The original query language was the RELATIONAL CALCULUS
 - Fully declarative programming language
next was the RELATIONAL ALGEBRA
 - Imperative
 - Define a set of operations over relations
 - A RA program is then a sequence of those operations
 - This is the “abstract machine” of RDBs
Today we use SQL
 - Heavily influenced by RC
 - Has aspects of RA
 - Nastier than either of them!
Overview of Relational Calculus

RC is a variant on first order logic

You say: “Give me all tuples t where $P(t)$ holds”

$P(t)$ is a predicate in first order logic
First order logic allows predicates

- predicate: function that evals to true/false
- “It’s raining on day X” or $Raining(X)$
- “It’s cloudy on day X” or $Cloudy(X)$

Can build more complicated preds using logical operations over them

- and
- or
- not
- implies
- iff
Predicates (continued)

Example: $Raining(X) \rightarrow Cloudy(X)$

Evals to true if either:

- It is not raining on day X, or
- It is raining and cloudy on day X

Example: $Raining(X) \land Cloudy(X)$

Evals to true if:

- It is raining and cloudy on day X

Note the difference between them!

\rightarrow is like a logical “if-then”
First Order Logic

Just predicates and logical ops?
 ▶ You’ve got predicate logic

But when you add quantification
 ▶ ∀, ∃
 ▶ You’ve got first order logic
Universal Quantification

Asserts that a predicate is true all of the time

Example:

▷ $\forall (X) (\text{Raining}(X) \rightarrow \text{Cloudy}(X))$
▷ This is a zero-arg predicate (takes no params)
▷ Asserts that it only rains when it is cloudy
▷ Note: idea of universe of discourse is key!

Example:

▷ $\forall (X) (\text{Friends}(X, Y))$
▷ This is a predicate over Y
▷ Evals to true if the person Y is friends with everyone
Existential Quantification

Asserts that a predicate can be satisfied

Example:

- $\exists X (Raining(X) \land \neg Cloudy(X))$
- Asserts that it is possible for it to rain when it is not cloudy

Example:

- $\neg \exists X, Y (Friends(X, Y) \land Friends(X, Z) \land Friends(Y, Z))$
- This is a predicate over Z
- Evals to true if Z isn’t friends with two people who are also friends
Important Equivalence

\(\forall (X)(P(X)) \) is equivalent to...

not \(\exists (X)(\neg P(X)) \)

▶ Ex: \(\neg \exists (X, Y)(Friends(X, Y) \land Friends(X, Z) \land Friends(Y, Z)) \)
 is equivalent to
\(\forall (X, Y)(Friends(X, Z) \land Friends(Y, Z) \rightarrow \neg Friends(X, Y)) \)

Why important?

- Often easier to reason about \(\exists \) compared to \(\forall \)
- Can be hard to wrap brain around an assertion that something is true over every item in the entire universe!
- In fact, SQL does not even have \(\forall \)
Questions?