Comp 215: Intro To Program Design

Prof. Chris Jermaine
cmj4@cs.rice.edu
“Chris”
“Prof. Chris”
“Dr. Chris”
This Class

• 50% of content: modern programming and program design

 — The Java programming language will be used (no prior Java assumed)
 — But this is not a “Java class” per se
 — Goal is proficiency in modern OO program development
 — Will fixate on Java a lot (can’t get around that), but will try to stay general, as well
This Class

• 50% of content: modern programming and program design
 — The Java programming language will be used (no prior Java assumed)
 — But this is not a “Java class” per se
 — Goal is proficiency in modern OO program development
 — Will fixate on Java a lot (can’t get around that), but will try to stay general, as well

• 50% of content: modern algorithms
 — Modern computer science IS NOT programming
 — Modern computer science IS algorithmic thinking
 — We only program because we have to... it’s a necessary evil :-(
 — In keeping with this view, will try to avoid studying programming in a vacuum
 — Means we’ll have to cover a lot of algorithms to motivate our programming
What Is “Modern OO Program Development”?

• Simply a paradigm that forces abstraction when applied correctly
 — Unfortunately, very few people apply it correctly!
 — Despite what you might have heard, OO is no silver bullet
What Is “Modern OO Program Development”?

• Simply a paradigm that forces **abstraction** when applied correctly
 — Unfortunately, very few people apply it correctly!
 — Despite what you might have heard, OO is no silver bullet

• **What is abstraction?**
 — Abstraction means taking complicated machinery and wrapping it up in such a way that people can use the machinery w/o understanding the details
 — Abstraction is all about defining and enforcing **interfaces**
What Is “Modern OO Program Development”?

- Simply a paradigm that forces **abstraction** when applied correctly
 - Unfortunately, very few people apply it correctly!
 - Despite what you might have heard, OO is no silver bullet

- What is **abstraction**?
 - Abstraction means taking complicated machinery and wrapping it up in such a way that people can use the machinery w/o understanding the details
 - Abstraction is all about defining and enforcing **interfaces**

- Why is **abstraction** good?
 - In theory, effort to build/maintain system is linear in system functionality, SLOC
 - Why? With proper abstraction, everything is local
 - W/o abstraction, effort is quadratic: $1 + 2 + 3 + ... + n$ is prop. to n^2
On To Java!

• “Java”... what is it? What’s the big idea?
 — OO programming language first released in 1995 (wow, pretty old already!)
 — Unique in that it was designed to run on a “virtual machine” (JVM)
 — To run a Java program, someone must have JVM installed on their machine
 — You write your program, software called compiler translates into Java bytecode
 — You give your bytecode to someone who wants to run your program
 — JVM on their machine interprets that bytecode
 — Interprets = uses underlying hardware to take actions spec’d by bytecode
On To Java! (cont’d)

• The JVM is a really big deal!
 — Same bytecode runs on a Mac, PC, Unix server, smartphone, anything with a JVM
 — JVM ensures a set of key algs, data structures, and I/O capabilities are there to use
 — All bundled in the “Java Class Library”... comes with the JVM
 — Back in ‘95, a typical PL might have a target-specific compiler + some low-level libraries (such as libc for C/C++ I/O)
 — Needed hash table? You wrote your own, asked your friends, or searched the web
 — Using Java? Just use the hash table that comes with the JVM
 — Hard to overstate significance of this change!
Compilation vs. Interpretation

• Java is a “compiled” language
 — Since entire program is translated into low-level bytecode, all at once
 — Then the bytecode is run

• Python is an “interpreted” language
 — Python interpreter actually executes Python

• Why might we prefer a compiled language?
Compilation vs. Interpretation

• Java is a “compiled” language
 — Since entire program is translated into low-level bytecode, all at once
 — Then the bytecode is run

• Python is an “interpreted” language
 — Python interpreter actually executes Python

• Why might we prefer a compiled language?
 — Often far faster to execute (though use of JVM does hurt a bit in the case of Java)
 — Can catch many errors at compile time
So Is Java A Good Language?

• The bad stuff:
 — It’s going on 20 years old, and showing its age a bit
 — Some stuff (such as “generics”) are arguably not done correctly
 — It’s a big and complicated language (so our class is quite back-loaded!)
So Is Java A Good Language?

• The bad stuff:
 — It’s going on 20 years old, and showing its age a bit
 — Some stuff (such as “generics”) are arguably not done correctly
 — It’s a big and complicated language (so our class is quite back-loaded!)

• The good stuff:
 — It’s the most modern of the widely-used languages
 — The JVM
 — It’s somewhat difficult to really screw up in Java (compared to C, for example)
So Is Java A Good Language?

• The bad stuff:
 — It’s going on 20 years old, and showing its age a bit
 — Some stuff (such as “generics”) are arguably not done correctly
 — It’s a big and complicated language (so our class is quite back-loaded!)

• The good stuff:
 — It’s the most modern of the widely-used languages
 — The JVM
 — It’s somewhat difficult to really screw up in Java (compared to C, for example)

• Why are we using it?
 — For me, comes down to pragmatics
 — Meanwhile, we can sit and hope for a better alternative! C# anyone?
Writing Your First Java Program

• You’ll have to do this to “pass” the second class meeting
 — More explicit instructions will be given at that time!
 — But most should be able to do this at home, with little difficulty
Writing Your First Java Program

• You’ll have to do this to “pass” the second class meeting
 — More explicitly instructions will be given at that time!
 — But most should be able to do this at home, with little difficulty

• First, you’ll need to download a “JDK”
 — Contains compiler, JRE (JVM, object library), and a bunch of other stuff
 — The one you want comes from Sun/Oracle (just Google “JDK”)
 — You’ll want version 7
Writing Your First Java Program

• You’ll have to do this to “pass” the second class meeting
 — More explicitly instructions will be given at that time!
 — But most should be able to do this at home, with little difficulty

• First, you’ll need to download a “JDK”
 — Contains compiler, JRE (JVM, object library), and a bunch of other stuff
 — The one you want comes from Sun/Oracle (just Google “JDK”)
 — You’ll want version 7

• Then, you’ll want an “IDE”
 — Allows you to manage the source files associated with a program
 — Typically has support for debugging, testing, editing source code
 — Standard open source IDE is called “Eclipse”
 — We’ll use one targeted towards “Java 101” users called DrJava
Once You’ve Installed the JDK and DrJava

• Fire up DrJava

 — Check “Full Java” under “Language Level”

• Then type in your first program:

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello World");
    }
}
```

• Press “compile” and then “run” and watch it go...
What Does This Program Do?

// A “class” is a bundle of data plus functionality (methods)
// A “program” consists of a set of classes

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

public class HelloWorld {

 // This is a “static” method called “main”
 // “static” means that it is shared by all objects of
 // type HelloWorld
 // “public” means it can be called from outside the
 // class
 // In every program, a class must have a public, static
 // method called “main” that’s invoked at startup
 // “args” is the list of parameters passed via the
 // command line when the program is run
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}
public class HelloWorld {
 public static void main(String[] args) {

 // “System” is a special class in the SCL
 // It has a data item (aka, a “member”) called “out”
 // that corresponds to your console
 // “out” has a method called “println” that accepts a
 // string and outputs it
 System.out.println("Hello World");
 }
}