Automatically Highlighting Relevant Text for Cooperative
Human/Computer Document Classification

Abstract

We consider the domain of biomedical infor-
mation retrieval, where we wish to process
the (potentially copious) clinical notes in an
electronic medical record to answer a ques-
tion such as, “Has this patient been treated for
breast cancer?” The answer to such a ques-
tion is often buried deep in a very long docu-
ment, and thus notoriously difficult to answer
accurately in a fully automated fashion. We
propose a probabilistic graphical model called
a word-label regression model that can learn
how to specific highlight passages in the text
that a human expert should examine to deter-
mine the document label.

1 Introduction

Some document classification problems are not
amenable to a fully automatic solution. Consider a
large database of documents, each chronicling a pa-
tient’s treatment history (that is, an “Electronic Med-
ical Record”, or EMR). A record contains (poten-
tially) hundreds of “clinical notes”, which are elec-
tronic notes written by physicians. The goal is to use
those notes to identify those patients who at some
time have had a particular medical condition, such
as breast cancer (Stanfill et al., 2010).

The problem is exceedingly difficult. Because
breast cancer is uncommon (incidence less than
1%), the classes are highly unbalanced, which is
a classic problem (Japkowicz, 2000); also, obtain-
ing an unbiased set of positive training examples
is expensive. Further, determining the answer is
akin to searching for the proverbial needle-in-a-
haystack. Often only a few words in a thousand-
line note are indicative of cancer. Finally, the dis-

tinctions between positive and negative samples are
so subtle that two medical doctors will disagree as
to whether the patient described had breast can-
cer or not. Even using a a domain-specific text-
processing pipeline (D’ Avolio et al., 2010) (which
utilizes medical ontologies and “understands” the
difference between patients and family members)
we have found it difficult to build a high-recall clas-
sifier (> 90%) that has precision exceeding 10%.
Were a 50,000 record sample classified automati-
cally, 5,000 records would be returned as “possible”
positives, with only 500 being true positives. At fif-
teen minutes per record, combing through this set
would require 1,250 hours of expert time.

With this in mind, our goal is to give the human
expert some automated assistance, and reduce the
per-EMR examination time. We seek to develop a
software supporting the following workflow:

1. The software takes as input a corpus, where
each document has been labeled using an error-
prone learner. In practice, this “learner” might
return the answer to a query such as “Does the
document contain one of the terms breast can-
cer, DCIS, or ductal carcinoma in situ?”

2. If an expert is available, a few of the documents
might be processed by a human, who has un-
derlined those passages (contiguous blocks of
words) in the text are most likely associated
with a positive document label.

3. The software learns how to identify key pas-
sages associated with a positive label.

4. A set of candidate positive documents have
their key passages underlined; the documents
are given to a human expert for a final labeling.
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Figure 1: The WLR model. Boxes are factors, shaded
circles parameters, and empty circles latent variables.

The hope is that by underlining a small subset of the
document, the human expert doing the final labeling
can be directed to the most important passages in
the text, and it will be possible to greatly speed the
final processing of the corpus. The main question
we consider in this paper is: How can we develop a
software to support this process?

Existing Work. The currently-existing model that
is the closest match for solving this problem is
the now-ubiquitous conditional random field (CRF)
(Lafferty et al., 2001). One could imagine defining a
special label that corresponds to a word that should
be underlined, then learning a CRF that is able to
associate such a label with the words in a test docu-
ment.

However, there are two reasons that using a CRF
is not appropriate here:

1. The learning problem is supervised at the doc-
ument level. A document that is labeled 41 by
the weak learner should have, relatively speak-
ing, a lot of underlined words.

2. The problem is (mostly) unsupervised at the
word level. In the most general case, we have
no training data at the word level (that is, we
have no examples of underlined words during
training and must infer the underlining using
only the document-level labels). Even in the
semi-supervised case, we will have training ex-
amples for only one type of label (the one asso-
ciated with an underlined word).

The Word-Label Regression Model. To handle
this, propose a simple factor-based model called the
word-label regression model, or WLR model, that
differs from a CRF in (at least) two important ways:

1. It is supervised at the document level.

2. It is Bayesian, which makes it easy to incor-
porate our prior expectations (such as the fact
that underlined words tend to sequentially fol-
low one another) in a principled fashion, via the
use of appropriate priors.

In this paper, we describe the WLR model, as
well as how to perform full-Bayesian inference for
the WLR model using an efficient Gibbs sampler.
We develop a dynamic programming algorithm that
finds the most likely underlining for a particular doc-
ument, given a learned WLR model. We also show
experimentally the utility of the method.

2 The WLR Model

2.1 Overview

A simple WLR model is depicted in Figure 1. There
is an unseen label associated with each word in the
document, as well as visible label describing the
document as a whole. The model is discriminative,
in that a document’s words and the document-label
are taken as input parameters. A factor connects
each word-label with its associated word, as well as
the word-label of the previous word. Another key
aspect of the model is the presence of a “regres-
sion” factor, which connects the set of word-labels
present in the document with the document’s label
via a logistic regression function. This factor mea-
sures whether the set of word-labels present in the
document are in-keeping with the document’s label.

2.2 Initial Formulation

Let D =dy, do,. .., dy be adocument corpus. Each
document d is a sequence of N words (tokens) and
the total number of unique words, i.e. the dictionary
size, is A. A latent word-label, which represents the
context within which that word appears, is associ-
ated with each word. There are K possible labels.
Assuming that we are using a WLR model to learn to
underline the important passages in a document, one
of those K labels will be designated the “underlined
label”, and a word in the document is underlined if
and only if it is assigned that label.

The association of word-labels to words in a par-
ticular document can be represented with a simple
factor graph, as shown in Figure 2. The vector
wq = (wi,wy,...,wn,) contains the words in the
document and the latent vector 1; = (3,12, ..., In,)



Figure 2: Factor graph for the initial formulation.

is the word-labels. Note that since the model is not
generative with respect to the document words, wy
is viewed as a constant parameter rather than a vari-
able. Assuming there are K possible word-labels,
we define M to be a K x K matrix where entry m; ;
is the model’s affinity for transitioning from word-
label 7 to word-label j. A larger m; ; means it will
be more likely that the transition is taken. Moreover,
we define © to be a K x A matrix where entry 0; ,, is
the model’s affinity for associating word-label ¢ with
word w. Since we apply a Bayesian approach, each
m; ;j and 6; ., is viewed as a latent variable, with an
appropriately chosen prior.
Then, the joint probability of 1; given wy; is:
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Alternative Model. During Bayesian inference—
we will employ a Gibbs sampler to perform
inference—whenever we need to evaluate P(m; ;|.)
or P(6;].) for a candidate m; ; or 6;,, value, we
need to re-evaluate Z. This is problematic, because
evaluating Z requires time proportional to the size
of the corpus. This renders inference impractical.

A slight modification addresses this. This alterna-
tive graph is presented in Figure 3. Specifically:
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Figure 3: No-normalization factor graph.

That is, while we still incorporate the label-to-
label and word-to-label affinities, these affinities are
grouped and normalized so as to guarantee that:
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Thus, we can ignore the denominator entirely since
it always evaluates to one. As we will discuss in de-
tail in the next section of the paper, this alternative
factorization will permit an efficient MCMC sam-
pling algorithm that requires only O(A) (or O(K))
time to evaluate the conditional likelihood of a can-
didate m; ; (or 0; ,,,) value, respectively.

Is a Markovian model problematic? The con-
cern with forcing local normalization on sequential
models of this type is that the labeling of words
becomes Markovian; this is known to be problem-
atic for this type of sequential model. For example,
consider the bigram “ductal carcinoma” (referring
to the presence of abnormal cells in a milk duct),
which should almost always be underlined when
searching for patients who have had breast cancer.
Let the words “ductal” and “carcinoma” be w; and
wo, respectively. Imagine that the word “ductal” is
(erroneously) not given the correct label ¢, which
would have marked it as an underlined word. Un-
der Markovian normalization, Pr(l2|l; # ¢ A w2)



must always be at least % for some value of s,
given that the probabilities over all possible labels
on ‘“carcinoma” must sum to one. Hence, “carci-
noma” is limited in how much it can punish a bad
decision at “ductal”. In contrast, an un-normalized
model give a tiny weight to all factors of the form
f(la,l1 # ¢, “carcinoma”, ©, M), penalizing [; # ¢
at “carcinoma” arbitrarily.

This can be sidestepped in the WLR model. Since
the model is Bayesian, over-fitting is not a concern,
and we can increase K (the number of labels) to re-
duce % as desired, allowing for an arbitrary pun-
ishment at “carcinoma” in our example, at the cost
of slower inference. In a sense, Markovian normal-
ization allows a user to explore a trade-off between
computational efficiency and model quality.

2.3 Regression

The WLR model is supervised in the sense that the
individual word-labels chosen must be in-keeping
with the document label L. To force this, a fac-
tor fr corresponding to a logistic regression over
the word-labels is added to the model, as depicted
in Figure 1. fr is defined as follows. Let p(l4,7) =
%ﬁljzl) (I in this expression is the identity func-
tion, returning one if the argument evaluates to true,
and zero otherwise), be the proportion of word-label
1 in the document d. Given a vector of weights
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Note that this is equivalent to a generative view
where we assume that the label L; was produced via
a trial over a Bernoulli variable where the probabil-
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2.4 Complete Formulation

Before combining the sequential model and the re-
gression to form the final PDF, we define priors over
M, O, and ® (I" denotes the Gamma distribution):

m;; ~ T'(k1, B1)
O ~ I'(k2, B2)
¢; ~ Laplace(0,b)

Here k1, 61, ko, 02, b are given constants. Putting it
all together, we have:
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And so the posterior PDF for the entire dataset is:
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3 Inference

3.1 Efficient Gibbs Sampling

We employ a Gibbs sampler for inference. This re-
quires that we be able to derive the conditional pos-
terior distributions for each 0;,,, for each ¢;, for
each m; j, and for each [; in each 1.

Given P({1;}}_,,0,M, ®|.) from the previous
section, deriving the required distributions is quite
mechanical, and for brevity it is not covered in the
paper. However, we discuss a few of the key imple-
mentation details.

Updating /; in 1;. Given a candidate value I} for
l;, let lzl denote 1; after it has been updated so that
l; = lg. To re-sample [;, we must sample from a
categorical distribution where

P<lz - l;‘) = f(li—lv gawh@aM)fR( :17Ld7 (I))

Evaluating the first factor is straightforward, but a
naive evaluation of the second would make a pass
through the document d and require O(Ny) time.
This can be reduced to constant time by record-
ing, for each document, the current sum Zfi 1 Pk X
p(lg,7). Then when evaluating P(l; = 1)|.) for a

candidate value of lg, we subtract % from the sum,

o .
and add N—l;, to re-evaluate the sum for the candidate.

Updating m; ;. There are several ways to up-
date m; ;; the most straightforward is to use a re-
jection sampler (Robert and Casella, 2010). As
above, given a candidate value m;J for m; j, let



M’ denote M updated to incorporate m/ - Us-
ing a rejection sampler for m;; requires eval-
vating P(m;; = mj;|.) efficiently. It is
easy to show that this value is proportional to
F(m;j‘kl,ﬁl) HdP(ld’Wd,Ld,@,M/,‘I)). Note
that P(14|wg, Lg, ©, M, @) itself is a product of Ny
factors, but the value of the kth factor in this expres-
sion is constant with respect to m; ; unless I, = @
and [, = j. We can take advantage of this to greatly
speed evaluation of P(m; ;j = m; ;|.). For each (i,
7, w) triple, we count the number of times that word-
label ¢ transitioned to word-label j, where word-
label j was associated with word w. Let ¢; ;,,, denote
this count. Then P(m; j = m; ;|.) can be evaluated
in only O(A) time as proportional to:

ES

M jl-) H fi,j,w, ©,M) .

The numerator of each of the K factors in the above
expression clearly takes O(1) time to evaluate, but
if evaluated naively, the denominator of each fac-
tor will take O(K) time, resulting in an overall
O(K x A) cost. However, all affinities out of word-
label 7 (that is, all m; ) have the same set of de-
nominators. Thus, they can all be evaluated once
and saved for a particular i in O(K x A) time, then
maintained incrementally as each m; ; is updated.
After the initial evaluation, each denominator need
only be looked up in a table. This amortizes the
cost down to O(1) for evaluating the denominator
in a factor, and the cost is then O(A) for evaluating
P(m;; = m” .). Also note that O(A) is only an
upper bound; since most of words only occur a few
times in the corpus, the majority of the ¢; ; ., values
will be zero and most evaluations will be far faster.

Updating 0; ,,. An almost identical strategy can be
used to update each 0; ,, using O(K) time for each
evaluation of P(0;., = ¢; ,|.). The difference com-
pared to the above case is that here, the kth factor
in the formula for P(l;|.) is constant with respect to
0; w unless [, = ¢ and w;, = w. We can again take
advantage of this by collecting the various c; j ,, val-
ues in a single pass over the corpus. At the same
time, we also count the number of times in the cor-
pus that word-label ¢+ and word w begin a document;

this is denoted as ¢; ,,. Then P(6; ., = 0;w|) o

K
L(0rl)f (0w, ©f C“”H fUsiyw, €', M)e,

As above, a naive evaluation of the denominator in
each factor would take O(K) time. But again, the
K denominators for each factor are identical for all
word-label affinities involving word w. Again, these
K denominators can be evaluated once in O(K?)
time, and re-used for updating each of the A differ-
ent 6; ., variables. This amortizes the cost down to
O(K/A) ~ O(1) per evaluation of the denominator,
leading to a O(K) cost for each i, w, pair.

3.2 Incorporating Training Data

If word-level training data are available, a word-
label 1 is arbitrarily declared to be the word-label
that will be highlighted. To incorporate training data
into MCMC sampling, all expert-underlined words
are assigned label 1 and are never updated. Fur-
ther, word-label 1 can never be assigned to those
words that were not highlighted by the expert. Fi-
nally, when the regression coefficients are initialized
(and when they are updated during MCMC sam-
pling), we impose the constraint that ¢; must be no
smaller than ¢; for i € {2...K}. This ensures that
word-label 1 is the label that is most strongly asso-
ciated with a +1 document label. This is easily han-
dled during Gibbs sampling by truncating the condi-
tional posterior distribution for ¢; on the lower side
at max;>1{¢;}, and truncating the conditional pos-
terior for all other ¢; on the upper side at ¢;.

3.3 Choosing Appropriate Priors

The extent to which large blocks of contiguous
words have the same word-label (and hence are
highlighted together) is greatly influenced by the
priors chosen for the individual entries in M. A
prior that tends to assign a relatively high affin-
ity to a word-label-to-itself transition ensures that
the trained model highlights longer passages. This
should be seen as a “feature” of the model, providing
a principled tuning mechanism, which is important
in the absence of word-level training data.



4 Document Highlighting

Producing an actual highlighting is tricky. During
MCMC inference, M, © and ® quickly become sta-
ble after a short burnin. However, the actual word-
labels are constantly in a state of flux. Labellings
drift from one state to another, holes in word-label
sequences open up and then close again, and no one
labeling is particularly suitable.

The logical solution is to first run the MCMC
sampler for a sufficiently long burnin period, aver-
age M, © and ® over the last few iterations, and use
those parameters as input to a maximum likelihood
(ML) computation, which is far more stable. This is
relatively easy to do efficiently using a Viterbi-like
dynamic programming (DP) algorithm (AJ, 1967),
with the caveat that the ML computation does not
take into account the regression factor.

Let « denote the number of words in document d
to highlight, and let U denote the set of word-labels
to highlight—this will typically include those word-
labels with the largest ¢; regression coefficients. Let
Fi, j,a] to be the maximum likelihood obtainable
by highlighting a of the first ¢ words in the docu-
ment, subject to the constraint that [; = j. In the DP
formulation, we define the base cases for F'[]:

e F[1,7,1] = f(j,w1,0)if j € U,else 0.
o F[1,7,0] = f(j,w1,0)if j ¢ U,else 0.
o F[l,j,a] =0ifa > 2.

The first two cases simply apply the factor from
Section 2 appropriately. The third case reflects the
fact that we cannot highlight more than one of the
first one words in the document. Then the recurrence
relation on F'[] is defined as F[i, j, a] =

o maxp{Fi—1,k,a—1] x f(k,j,w;, ©,M)}if
jeu

o maxi{F[i—1,k,a] x f(k,j,w;, ©,M)}if j &
U

The first case applies when we are highlighting word
1; here the best solution must be constructed by high-
lighting @ — 1 of the first ¢ — 1 words. The second
applies when we do not highlight word ¢; here we
construct the best solution by highlighting a of the

Shared words | Only MD4 | Only MDp
Doc A 216 7 42
Doc B 386 10 236
Doc C 348 17 272
Doc D 221 29 304
Doc E 589 46 689

Table 1: Difference in highlighting between human ex-
perts.
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Figure 4: Results for experiment (a). The goal is to
predict the underlining of MDpg. The y-axis is the per-
document F1. The boxes show the 25th to 75th F1 per-
centiles over all 50 test documents.

first 2« words. The optimal highlighting itself is eas-
ily obtained by tracing the path used to obtain the
ML value (located at max;cy{F [Ny, j, ]}) back
through the F'[.] array.

5 Experimental Evaluation

5.1 Study Goals

Our ultimate goal is to assess the utility of our model
for producing useful highlightings, particularly in
our stated, biomedical application domain.

The best way to do this would have undoubtedly
been to recruit several medical doctors, and then ask
them to label a number of documents, both with and
without the aide of the automated highlighting pro-
vided by the WLR model. The accuracy and speed
with which the doctors labeled the documents with
and without the WLR labeling would be examined
to decide if it was helpful.

Unfortunately, running such a study with the pri-
mary goal of evaluating the WLR model is not feasi-
ble.! As such, we do the next best thing, and evalu-
ate whether the WLR model is able to produce high-

!The problem is obtaining IRB (institutional review board)
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Figure 5: Results on 50 real test documents for experi-
ment (b). MD 4 was the target.
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Figure 6: Results on 20-newsgroups (experiment (c)).

lightings that closely match highlightings produced
by domain experts (in particular, we study the high-
lightings produced by the last two authors of this
paper, who are medical doctors). If one assumes
that an expert-supplied highlighting would likely be
useful for another expert who is attempting to label
the document, then the ability of the WLR model
to closely match an expert-supplied highlighting is a
reasonable proxy for a direct measurement.

5.2 Experimental Methodology
We evaluated our methods on two data sets.

Biomedical Data Set. We obtained a set of 1000
outpatient EMRs. The set consists of 500 sets of tex-

approval. The IRB is tasked with performing a risk-reward anal-
ysis on all such research. Since EMRs contain copious amounts
of personal health information and are generally impossible to
de-identify, there is a risk of disclosure associated with pre-
senting a large number of them to a third party—in this case,
the doctors whose labeling acumen we would study. Without
a biomedical study that directly benefits from undertaking this
risk (for example, a clinical trial that needs to locate a large
number of patients suffering from a particular ailment), obtain-
ing IRB approval would be an uphill battle.

tual clinical notes obtained from EMRs associated
with patients who have been billed for breast cancer
(that is, where the EMR is labeled with ICD-9-CM
codes 174.* (ICD 9 Codes, )) and 500 notes describ-
ing patients that have not been billed for breast can-
cer. We labeled the notes of the former patients as
+1. Patients who were not billed for breast cancer or
a related condition were assumed to have no history
of breast cancer, and are labeled —1. The labellings
are thus somewhat noisy, since (for example) former
cancer patients may be treated for another condition.
The notes varied greatly in length, from a few hun-
dred to a few tens of thousand words.

We then selected two sets of 50 patients at ran-
dom from those that had been billed for breast can-
cer, and the last two authors of the paper (hereafter
called MD 4 and MDp) highlighted the documents,
noting any text that they felt would be important to
an expert who was reading the document, trying to
determine if the patient had breast cancer. 5 of the 50
documents for each doctor were shared, so 95 docu-
ments in all were underlined. This took both MD 4
and MDp the better part of a week.

Synthetic Data Set. We also used the ubiquitous
20-newsgroups data set to create a synthetic ex-
periment. Since we needed to simulate a situation
where there was interesting text embedded within
a document that needed to be underlined, we did
the following. To create a +1 labeled synthetic
document, we first sampled a document “length” [
from a Poisson(10) distribution. We then selected
I documents at random from the 20-newsgroups
data set, subject to the constraint that the ith of
the [ documents had a 25% chance of being from
soc.religion.christian, and a 75% chance of being
from talk.*. All of the [ sampled documents are then
concatenated together to form the synthetic docu-
ment. Furthermore, the portion of the document that
came from soc.religion.christian was highlighted. In
this way, we create a document where 25% of the
text is from soc.religion.christian, and should be
highlighted. To create a —1 document, none of the
text comes from soc.religion.christian; that is, every
synthetic document is composed entirely of news-
group articles from talk.* that have been concate-
nated together.

Methods Tested. It is challenging to put together



a strawman constructed out of off-the-shelf compo-
nents to test the WLR model against, without having
to solve some difficult problems in the process. Af-
ter a lot of thought, we came up with two options.

We term the first option “regression-no-expert’”.
In this case, we learn a regression model that does
not take into account any example underlinings, only
the overall document label. We pre-process each
document so that it is represented as a bag-of-words
TF-IDF vector, then train an L2 regularized logistic
regression model. In order to perform an underlin-
ing during testing, the TF-IDF vector for each sen-
tence in the test document is computed, and its dot
product with the vector of regression coefficients is
computed. All of the sentences are then sorted (from
large to small) on the resulting weight, and those
sentences with the highest weight are underlined (as-
suming that a target number of words are known, we
can keep adding underlined sentences until the target
number of words have been underlined).

We term the second option “regression-expert’”.
In this case, we learn a model that makes use of
example underlinings. We assume a set of training
documents that have been underlined by an expert.
We pre-preprocess each sentence in the set of docu-
ments that the expert has underlined so that it is rep-
resented as a bag-of-words TF-IDF vector, and then
train an L2 regularized logistic regression model on
all of those sentences; all underlined sentences are
given a +1 label, and those that are not underlined
are given a —1 label. During testing, we again sort
the sentences based upon the likelihood that they
should be underlined, and given a target number of
words, we can keep adding underlined sentences un-
til the target is reached. This option is similar to
some methods applied in automatic document sum-
marization (see the related work section).

In addition to these two methods, we also test two
WLR-based methods. In the first, the WLR model
is trained without access to any example underlin-
ing, and only with access to the document label. 20
different latent labels are used. We call this “WLR-
no-expert”. In the second, the WLR model is trained
with access to example underlinings. 20 different la-
tent labels are used. We call this “WLR-expert”.

Experiments Run.
formed two sub-experiments, (a) and (b).

On the real data, we per-
In (a),

the goal was to predict the underlining performed by
MD 4—so0 945 documents (900 of which had only
document-wide labels, 45 of which had MDpg’s un-
derlining available to WLR-expert and regression-
expert) were used as training with the goal of pre-
dicting MD 4’s 50 underlinings. In (b), things were
reversed and the goal was to predict the underlining
performed by MDp.

On the synthetic data, we ran experiment (c).
In this experiment, 1000 synthetic documents were
used for training, and 1000 synthetic documents
were used for testing. Each of the 1000 training doc-
uments had an underlining available to WLR-expert
and regression-expert during model training.

In each experiment, it is necessary to choose how
many words to highlight. To allow for a meaning-
ful and easy-to-interpret comparison, the number of
words highlighted is always set at the “correct” num-
ber (the number or words chosen by MD 4 or MDp);
see Footnote 2 for more discussion. Choosing this
number automatically is a problem for future work.

5.3 Quantitative Results

First, to give an idea of how much variance there
might be a high-quality highlighting, in Table 1, we
compare, for each of the five shared documents, the
highlightings performed by MD 4 and MDp. In fact
there is quite a lot of agreement between MD 4 and
MDpg. In each case, more than 90% of the words
underlined by MD 4 were also highlighted by MDp,
though MD g tended highlight a super-set of MD 4’s
words, highlighting about twice as many.

Second, the degree of agreement between the au-
tomatic highlighting and the highlighting of MDp
(experiment (a)) is presented in the boxplot of Fig-
ure 4. The y-axis of the plot is the per-document F1;
the box depicts the 25th to 75th percentiles of the F1
observed over all test documents.? Since the number

’The reader may wonder why we did not consider AUC.
Typically, a classifier will assign each item a probability of be-
ing labeled +1. By decreasing the threshold below which a +1
label is assigned, more objects will be classified positively, re-
sulting in higher recall, and lower precision. AUC quantifies
this trade-off. However, this trade-off does not exist in our set-
ting since the labellings of words within a document are not in-
dependent. One could decide to underline more words and have
the effect of actually lowering recall and/or increasing preci-
sion, because a completely different set of words will be under-
lined at the higher number. Hence AUC is not applicable, at



of automatically underlined words is constrained to
be equal to the number underlined by the expert, the
precision, the recall, and the F1 are all the same.

Results, obtained using the model to predict
MD 4’s underlining (experiment (b)) is given in Fig-
ure 5. The plot for the 20-newsgroups data (experi-
ment (c)) is given in Figure 6.

5.4 Discussion Of Quantitative Results

In every case, the WLR model was dominant. The
WLR model with word-label training data had a re-
call/precision/F1 that was 20 to 40 points better than
the logistic regression strawman. Without word-
label training data, the gap was 10-20 points. On
the breast cancer labeling task, the WLR-expert op-
tion reached a recall/precision/F1 of between 0.4
and 0.6, which we feel is quite high given that the
amount of the document to be highlighted was typi-
cally just a few percent, and that training and testing
were done on the highlightings of different doctors.

One interesting finding was that it was much more
difficult to accurately match MDp’s highlighting
than MD 4’s. This is likely explained by looking at
Table 1. MD 4 was generally much more judicious
with his highlighting, suggesting that it was more
precise. One may reasonably deduce that this makes
it much easier to mimic.

5.5 Qualitative Results

To give the reader some idea of what the documents
and highlightings actually look like, we give two of
them in Figures 7 and 8. The human in this case
was MD4, and MDp’s highlightings were used to
train the WLR model. Figure 7 shows a case where
the accuracy was high (75%), and Figure 8 a case
where it was low (35%). In the former case, a huge
amount of text was highlighted, and so only a por-
tion of each highlighting is shown. In the latter case,
the highlighting of each method is shown in its en-
tirety. One thing that is striking from these exam-
ples is that all four highlightings seem more or less
defensible. Take Figure 7. The expert chose to high-
light a passage regarding family history, while the
WLR model choose to replace this highlighted pas-
sage with a note about a right breast mass. Either
choice seems reasonable.

least in the classic sense.

Human Expert Highlighting

...Ms — is a —year-old female who presents for further
evaluation of a right breast mass. The patient first noted

the lesion in her right breast on —. Approximately 3

months prior to that... [long text] ...and a biopsy was

recommended. The patient was referred for further man-

agement. The patient denies any change in the lesion since
she has noticed it and has no history of any pain or nipple

discharge and no history of any lesions on the left by the

patient report and normal mammogram 3 months prior.

PAST MEDICAL HISTORY: Asthma. PAST SURGICAL
HISTORY: Tubal ligation, cholecystectomy, and rotator cuff
repair. FAMILY HISTORY: She had a grandmother who
died of breast cancer in her early —'s as well as maternal

great aunt who died of breast cancer. No family history of...

[long text] On the patient history form, again, she noted
a right breast mass, which has not change in size since she
has noticed it. The rest of the review of systems is negative
per the patient’s history... [long text] BREASTS: She has
no supraclavicular or infraclavicular or axillary adenopathy.
On inspection, she has no erythema or dimpling. No nipple
retraction. On palpation of her right breast she a 3 x 4-cm
mass located at the 6 o'clock position 6 cm from the nipple.

It is firm and consistent with a malignancy. It is moveable,

but | believe it is fixed to the muscle. She has no palpable

masses in the left breast. IMPRESSION: ...
WLR Highlighting

...Ms — is a —year-old female who presents for further
evaluation of a right breast mass. The patient first

noted the lesion in her right breast on —. Approximately

3 months prior to that... [long text] ..and a biopsy

was recommended. The patient was referred for further

management. The patient denies any change in the lesion

since she has noticed it and has no history of any pain or

nipple discharge and no history of any lesions on the left by

the patient report and normal mammogram 3 months prior.

PAST MEDICAL HISTORY: Asthma. PAST SURGICAL
HISTORY: Tubal ligation, cholecystectomy, and rotator cuff
repair. FAMILY HISTORY: She had a grandmother who
died of breast cancer in her early —'s as well as maternal
great aunt who died of breast cancer. No family history of...
[long text] On the patient history form, again, she noted
a right breast mass, which has not change in size since she
has noticed it. The rest of the review of systems is negative

per the patient’s history... [long text] BREASTS: She has

no supraclavicular or infraclavicular or axillary adenopathy.
On inspection, she has no erythema or dimpling. No nipple
retraction. On palpation of her right breast she a 3 x 4-cm
mass located at the 6 o'clock position 6 cm from the nipple.

It is firm and consistent with a malignancy. It is moveable,

but | believe it is fixed to the muscle. She has no palpable

masses in the left breast. IMPRESSION: ...

Figure 7: Comparison of expert and WLR highlightings.

6 Related Work

Extracting important sections in the text is long-
studied. An overview can be found in (Das and Mar-



Human Expert Highlighting

...PRIMARY MEDICAL ILLNESS: This is a —year-old fe-
male patient originally from who comes to the clinic for
followup and evaluation. The patient is seen in the ab-
sence of Dr. —. She has a past medical history of
breast cancer, triple negative, status post mastectomy and
adjuvant chemotherapy in —. The patient has remained
free of disease and living a normal life. The patient offered
no significant complaints in regards to her breast cancer past
medical history. She... [long text] The lungs were clear to
auscultation. There was no pain on percussion of the spine
or the costophrenic angles. The mastectomy scar is clean
with no evidence of recurrence, and the contralateral breast
is negative with no palpable masses. No palpable axillary
adenopathy...

WLR Highlighting

...PRIMARY MEDICAL ILLNESS: This is a —year-old
female patient originally from who comes to the clinic
for followup and evaluation. The patient is seen in the
absence of Dr. —. She has a past medical history of
breast cancer, triple negative, status post mastectomy and
adjuvant chemotherapy in —. The patient has remained
free of disease and living a normal life. The patient offered
no significant complaints in regards to her breast cancer past
medical history. She... [long text] The lungs were clear to
auscultation. There was no pain on percussion of the spine
or the costophrenic angles. The mastectomy scar is clean
with no evidence of recurrence, and the contralateral breast
is negative with no palpable masses. No palpable axillary
adenopathy...

Figure 8: Comparison of expert and WLR highlightings.

tins, 2007). Most approaches measure section im-
portance based on human-supplied, global features
such as sentence length, sentence position, existence
of a proper name or adjective, and so on. Another
long-studied problem is identifying shifts in docu-
ment topics (Hearst, 1997; Blei and Moreno, 2001;
Beeferman et al., 1999), though in contrast to the
WLR model, these approaches are typically unsu-
pervised.

There have been only a few Bayesian variants of
the CRF proposed in the literature, such a the aptly-
named Bayesian CRF (Qi et al., 2005), which em-
ploys power Expectation Propagation (Minka and
Lafferty, 2002) to approximate the posterior distri-
bution. A significant difference between our ap-
proach and CRF-based work is that the WLR model
is supervised. Supervised latent topic models have
previously been proposed (Zhu et al., 2009; Wang et
al., 2011; Blei and McAuliffe, 2007), but these mod-

els are non-sequential and utilize a bag-of-words
view of a document. There has been work on
semi-supervised CRFs (Mahdaviani and Choudhury,
2007; Mann and McCallum, 2008), but these do not
take into account document-level information.

The CRF variant most closely related is the Con-
ditional Topic Random Field (CTRF) (Zhu and
Xing, 2010) model, where a latent topic assignment
is defined with a Conditional Random Field. In con-
trast to purely generative models to capture correla-
tions between topic assignments (such as structured
models with Markov properties (Gruber et al., 2007;
Verbeek and Triggs, 2007; Wang et al., 2009b) or
latent permutations (Chen et al., 2009)) the CTRF
model provides a conditional scheme for incorporat-
ing word-level features. That said, the CTRF model
is still generative in the sense that the words in the
document are generated by the model.

Numerous proposals have been developed to ad-
dress the issue of normalization in document and
topic models. Most apply approximation techniques
(Murray and Ghahramani, 2004; Qi et al., 2005;
Welling and Parise, 2006; Wang et al., 2009a; Zhu
and Xing, 2010). A recent paper proposed the condi-
tional topic coding (Zhu et al., 2011), which is a non-
probabilistic formulation of the CTRF model that is
not subject to strict normalization constraints.

Finally, we mention the large body of work on au-
tomatic text summarization (ATS). The References
section of the paper includes a few relevant methods
(Shen et al., 2007; Wang et al., 2008; Goldstein et
al., 2000). However, there is an key difference be-
tween the vast majority of the ATS methods and the
problem we consider: in ATS the goal is to summa-
rize the entire document, rather than attempting to
find those (potentially) few discriminative passages.

7 Conclusions

In this paper we tackled the problem of automati-
cally identifying document passages that are most
relevant to a user-defined label. We proposed the
word-label regression model for this purpose, as
well as associated learning algorithms and a Viterbi-
style dynamic programming algorithm to perform
the actual highlighting. Our preliminary experimen-
tal study using electric medical records shows the
promise of the proposed method.
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