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ABSTRACT
In this paper, we describe BUDS, which is a specialized, declarative
domain specific language (DSL) for suppoting implementation of
large-scale, distributed, Bayesian machine learning algorithms on
top of a relational database system. There are two key optimization
challenges that must be addressed when compiling BUDS so that it
can run on top of a database. First, the system must determine how
to represent domain-specific data structures (vectors, matrices and
maps in the case of BUDS) in the relational system. Second, the
system must perform domain-specific re-writes. We show that in
the case of BUDS, it is possible to declaratively specify quite com-
plex machine learning computations in just a few lines of simple
code, and that these computations can be executed efficiently in a
distributed fashion over large data sets.

1. INTRODUCTION
Developing a statistical or machine application that derives value

from a large data set can be difficult. Unless the application uses
a standard model whose usage is widely understood and for which
a library implementations exists (such as logistic regression or k-
means clustering), building such an application typically requires
the following, three-step process:

1. The whiteboard step–First, do the math necessary to define
the model and derive the learning algorithm.

2. The small data prototype–Next, build prototype of the model
and learning algorithm using a tool such as Matlab or R, and
evaluate the prototype using a sub-sample of the data.

3. The big data deployment–Finally, build a robust, distributed
or parallel implementation of the learning algorithm and ap-
ply it to a large, production data set.

In practice, this workflow can require a tremendous amount of ef-
fort, some of which may be unavoidable. Developing a model and
a learning algorithm is something of a black art, requiring experi-
ence, intuition and trial-and-error. Moving from the whiteboard to
a small data prototype can require an iterative process, where the
model and learning algorithm are refined over time.

However, not all of the effort often required to realize this work-
flow appears to be absolutely necessary. Moving to a distributed or
parallel implementation of a large-scale learning algorithm from
a Matlab-based prototype often requires a frustrating amount of
effort, even using a dataflow platform such as Hadoop or Spark.
Much of this effort is related to the the programmer working as
something of a “human optimizer.” A programmer must make
dozens of crucial design choices, most of which relate to questions
such as what is an appropriate representation of data (especially in-
termediate results), which operations will be used to perform the
computation (joins, maps, reduces, etc.), the order those operations
are applied in, and also physical design choices such as which op-
erations will have results cached in RAM or on disk for future use.
In our experience, programmers have a very tough time planning
such a computation. For just a few examples, we have seen cases
where:

• In a text mining application written on top of Spark, a pro-
grammer inappropriately chooses to normalize the term-fre-
quency vectors associated with each document in the corpus,
storing each non-zero entry as a separate entry in an RDD.
The result is that each step of a gradient descent algorithm
requires an expensive join.

• In another Spark text mining application, a programmer does
not cache an RDD that is used at each iteration of the algo-
rithm, requiring it to be recomputed at each iteration.

• In an application mining spatial data, a programmer joins a
large number of grid cells with information about the loca-
tions each grid contains, and then takes the top twenty cells,
based on a metric that was known before the join. Had the
top-k operation been run first, the join would have essentially
been costless.

These may be examples of obviously poor programming choices,
but the fact is that getting a statistical computation to run on a very
large data set is difficult. Further, there is the problem that even
once the programmer gets things right, changing data characteris-
tics (or moving to an even larger data set) can render an optimal im-
plementation suboptimal. Dependence of data manipulation code
written in a non-declarative programming interface (such as the in-
terface exported by Hadoop and Spark) on the characteristics of the
data it operations on has long been recognized as undesirable. In
fact, the fragility of such non-declarative data processing codes was
impetus behind the definition of the fully declarative relational cal-
culus [] and eventually the declarative subset of SQL—two inven-
tions that began thirty years of dominance for the relational model.

DSL or General-Purpose Language? One might reasonably ask:
Is the solution to overcoming these problems adding a database-
style, cost-based optimizer to existing dataflow platforms?
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The answer appears to be no. Dataflow platforms such as Spark,
Hadoop, Flink, DryadLinq, and others are essentially APIs embed-
ded in a host programming language such as Python or Java. On
one hand, dispensing with a domain-specific language (or “DSL”)—
historically SQL—is a key selling point of such platforms. One of
the major drawbacks of SQL-based database systems for any sort of
domain-specific computation is that integration with full-featured
programming languages, and hence access to standard mathemat-
ical, statistical, and scientific libraries, has always been difficult.
On the other hand, dispensing with a DSL means that much of the
logic associated with the computation is embedded in the host lan-
guage and opaque to any optimizer. For example, it is not possible
for an optimizer to understand that a set of matrices in the host lan-
guage could be normalized to a set of row vectors managed by the
platform.

The BUDS Programming Language. Motivating the work de-
scribed in this paper is the belief that ultimately, to cover the wide
variety of applications in the data analytics space, a set of highly-
specialized declarative DSLs for data analytics are needed. In this
paper, we describe the BUDS programming language. BUDS is a
specialized, statistically-oriented DSL for declaratively specifying
a Markov chain whose state consists of millions or even trillions of
values, and may require terabytes to store. It is targeted specifically
at making the implementation of a statistical code for a large data
set a painless process.

At first glance, BUDS looks something like a variant of R or
MATLAB, with the difference being that a BUDS program is es-
sentially a list of dependencies among variables; these dependen-
cies declaratively specify a Markov chain (in this sense, BUDS
shares similarities with other DSLs for stochastic simulation such
as BUGS [?] and Stan [?]). The BUDS compiler then figures out
the best way to implement that Markov chain using an underly-
ing relational database system. The key benefit of BUDS is that it
is exceedingly simple to produce machine learning programs that
can run on hundreds of machines using just a few lines of BUDS
code. BUDS Markov chain specifications are designed to look al-
most identical to the mathematics that one might find written in
an academic paper, with data represented as vectors and matrices.
All of the details regarding how the computation actually works
are absent from the BUDS specification—they are figured out by
the system. Another key benefit of BUDS is that it is quite easy to
implement user-defined functions for BUDS that allow core com-
putations to be written in C/C++. Crucially, BUDS itself auto-
matically solves many of the type mismatch and marshaling/un-
marshaling complications that plague user-defined functions writ-
ing in general-purpose programming languages written for classical
database systems.

For the uninitiated, a Markov chain is a discrete-time stochas-
tic process, where at time tick i the state of the system Xi ran-
domly transitions to state Xi+1, in such a way that Pr[Xi+1 =
xi+1|x0, x1, ..., xi] = Pr[Xi+1 = xi+1|xi].

The reason that we are interested in declaratively specifying and
simulating a Markov chain with a very large state is that Markov
chin simulation is the most fundamental method for learning a sta-
tistical model in Bayesian machine learning (ML), where it is known
as Markov chain Monte Carlo, or MCMC [?]. Bayesian learn-
ing requires the characterization of a posterior distribution. If the
posterior distribution is complex and high-dimensional, this can be
impossible to do analytically, and one common method for under-
standing the posterior is to draw random samples from it. MCMC
methods for Bayesian ML work by defining a Markov chain such
that it is possible to draw a sample from the posterior by simulating
the defined chain for a number of transitions, and then taking the

state at the end of the simulation as a sample from the posterior—
that is, they define a Markov chain whose stationary distribution is
precisely the target posterior.

We note that while our focus is on the description and simulation
of Markov chains, BUDS is also very useful for specifying and
running non-random machine learning or statistical algorithms—
after all, deterministic, iterative optimization algorithms such as
EM [?] can be viewed as Markov chain simulations where there
is only one possible value for xi+1 given xi.

Our Contributions. Our contributions in this paper are as follows:

1. We describe the BUDS language in detail. While BUDS is
specifically geared towards Bayesian ML, it is a good exam-
ple of the sort of highly specialized declarative DSL for data
analytics that should exist for other specialized domains.

2. We consider the problem of how to compile programs writ-
ten in BUDS into computations that can be run on top of
SimSQL [?], which is a distributed database system. We
focus on two key technical questions that arise when com-
piling BUDS for SimSQL. First: How are data structures in
BUDS represented efficiently as tuples, vectors, and matri-
ces in SimSQL? Second, how are operations BUDS properly
translated in the target DSL so as to provide for an efficient
execution?

3. We have fully prototyped the BUDS language as well as our
proposed translation framework. We show that BUDS can
provide good performance for a variety of machine learning
computations on a distributed compute cluster.

Paper Roadmap. In the next section of the paper, we give a few
examples of BUDS programs, discuss the general philosophy of
the BUDS translation process, and also describe SimSQL’s SQL,
which is the target of the BUDS translation process. Section 3 of
the paper describes the BUDS language in depth. Section 4 de-
scribes the compilation process in detail. Section 5 benchmarks a
few BUDS programs, and Section 6 presents a review of the related
work. Section 7 concludes the paper.

2. BUDS OVERVIEW
In this section, we give a simple example of a BUDS specifica-

tion.

2.1 A Simple BUDS Program
Example Model. Our example centers on a simple Markov chain
that simulates k people traveling around a set of n cities and visiting
m restaurants. In this model, each individual travels independently
from one city to the other. Once the person arrives in a city, she
chooses one of the local restaurants and then moves to the next
city, repeating the process indefinitely.

The simulation is starts at iteration i = 0 by assigning each indi-
vidual to a city by drawing a random value from a categorical distri-
bution parameterized with the vector s of length n, which contains
the probabilities of starting at any given city (Here, “∼” should be
read as “is sampled from”):

c
(0)
j ∼ Categorical (s) for each j ∈ {1, 2, . . . , k}

Then each individual chooses a restaurant in that city. Given the
matrix D, which contains n rows and m columns and denotes the
probability of visiting each restaurant in a city (so that Da,b = 0 if
restaurant b cannot be found in city a), a restaurant is selected by
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Figure 1: Graph of variable dependencies for the cities-
restaurants model, iterations i = 0, 1, 2.

drawing a value from a categorical distribution, parameterized with
the row-vector corresponding to the assigned city c(0)j :

r
(0)
j ∼ Categorical

(
D
c
(0)
j

)
For subsequent iterations i = 1, 2, . . . , ..., the simulation chooses

the next city using the n-by-n transition matrix T denoting the
probability of moving from one city to another. The city is drawn
randomly from a categorical distribution parameterized with the
row-vector corresponding to the current city c(i−1)

j :

c
(i)
j ∼ Categorical

(
T
c
(i−1)
j

)
At each city, a restaurant is selected using a categorical distribu-
tion parameterized with the row-vector of D corresponding to the
current city c(i)j , subject to the constraint that the probability of the

previous restaurant r(i−1)
j is zero, to avoid visiting it again:

r
(i)
j ∼ Categorical

(
D
c
(i)
j

∣∣∣∣pr(i−1)
j

= 0

)
Representing the Data in BUDS. To implement this model in
BUDS, we begin by first specifying the base data set and variables.
This is done in the data section of a BUDS code:
data {

k: range(individuals);
n: range(cities);
m: range(restaurants);
s: array[n] of real;
D: array[n,m] of real;
T: array[n,n] of real;

}

In the above code, the range type is used to associate a data do-
main with an integer constant. For example, the domain of cities
is identified with integer keys from the set {1, 2, . . . ,n}. Users
can also describe structures over such domains, such as the matrix
D, defined as an array (here, a dense two-dimensional structure)
over the domains cities and restaurants.

The random variables are then under the var section of the code:
var {

c: array[k] of integer;
r: array[k] of integer;

}

Describing Dependencies. BUDS differs from other mathemati-
cal languages such as MATLAB in that it is fundamentally declar-
ative; to describe a computation, the programmer simply lists de-
pendencies among variables. When a BUDS program is executed,
variables are then updated recursively according to those dependen-
cies. As is standard in probabilistic models, the set of dependencies
can be represented as a directed graph in which vertices represent

variable instantiations and edges represent relations of dependency.
Figure 1 shows such a graph.

Since an iterative computation such as a Markov chain simu-
lation must be initialized, BUDS provides syntax for describing
initialization statements—that is, the variable assignments for the
“zeroth” iteration of the computation. The BUDS description of
the initialization for the variables c(0) and r(0) is:
init {
for (j in 1:k) {
c[j] <- categorical(s);
r[j] <- categorical(D[c[j]]);

}
}

The update assignments of c(i) and r(i) are then typically written
at the end of the BUDS program (in our example code, the function
setEntry is used to set the probability of the previously-visited
restaurant to zero):

for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
r[j] <- categorical(setEntry(D[c[j]], r[j],

0.0));
}

Note that this loop is an example of a comprehension [?], an idea
that we will make heavy use of in BUDS.

2.2 Another BUDS Example
We now give a complete BUDS implementation for an actual

Bayesian ML algorithm. The Bayesian Lasso [?] is a Bayesian
variant of the Lasso, using a regularizing prior on the regression
coefficients. In our discussion, we assume that the base dataset is
comprised of a regressor matrix X with n rows and p columns,
a response vector y of length n and the scalar, real-valued Lasso
parameter λ ≥ 0. The goal is to infer the vector of regression
coefficients β, the variance σ2, and the vector of features τ .

The learning algorithm for the Bayesian Lasso is a special Markov
chain simulation called a Gibbs sampler. Given the definitions
ỹ = y − µy, Dτ = diag (τ1, τ2, . . . , τp), Z = (ỹ −Xβ) and
A =

(
X>X+Dτ

)−1
as well as a suitable initialization for σ2

and τ , the update statements for the corresponding distributions of
the Gibbs sampler are:

β ∼ MultivariateNormal
(
AX>ỹ, σ2A

)
σ2 ∼ InverseGamma

(
(n− 1) + p

2
,
Z>Z+

(
β>Dτβ

)
2

)

τj ∼ InverseGaussian
(
λσ2

βj
, λ

)
for each j ∈ {1, 2, . . . , p}

This Markov chain can be specified in BUDS as in Figure 2. Note
that this simple bit of code tracks the mathematics almost precisely.
We begin with the definition of A, yy and Z, which correspond to
A, ỹ, and Z in the mathematical specification. We then give an ini-
tialization, as well as updates for b, sig and t, which correspond
to β, σ2, and τ in the math.

3. BUDS SYNTAX AND SEMANTICS
This section describes the BUDS language in more detail.

3.1 BUDS Data Types
A data definition binds a variable name to a data type that de-

scribes how the variable is structured. There are two kinds of data
definitions: base data definitions, which are located in the data
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data {
n: range(responses);
p: range(regressors);
X: array[n,p] of real;
y: array[n] of real;
lam: real;

}

var {
sig: real;
b, t: array[p] of real;
yy, Z: array[n] of real;
A: array[p,p] of real;

}

init {
sig <- invGamma(1, 1);
t <- { invGauss(1, lam) | j in 1:p };

}

A <- inv(X ’* X + diag(t));
yy <- { y[i] - mean(y) | i in 1:n };
Z <- yy - X * b;

b <- normal(A * (X ’* yy), sig * A);
sig <- invGamma( ((n-1) + p) / 2,

(Z ’* Z + (b ’* diag(t) * b)) / 2 );

for (j in 1:p) {
t[j] <- invGauss(sqrt((lam * sig) / b[j]),

lam);
}

Figure 2: BUDS specification for Bayesian Lasso learning.

section of the code and used to describe the domains and symbols
of the base dataset, and variable definitions, which are located in
the var section and describe the structure of random and tempo-
rary variables. The BUDS type system supports singleton types
such as integer, real, string, the compound array, list
and map types, and the special domain declaration and reference
types range and value.

Let us consider the Bayesian Lasso. Simple elements such as the
real-valued constant λ are easy to declare:

lam: real;

For the regressor matrix X and the response vector y to be de-
clared, a description of the domains on which those compound
structures are defined must be provided using the range type:

n: range(responses);

The above definition binds the symbol n to the domain of responses,
indexed by the integer key attribute values 1, 2, . . . ,n. Note that
range symbols can only be defined in the data section of the
code, and whenever a range symbol is referenced in the context
of a mathematical model expression, it denotes the maximum of
those integer key values. Once n has been declared and associated
with responses, both symbols can be used to describe structures
with compound types, such as the response vector y:

y: array[n] of real;

The above declaration defines y as an array of length n comprised
of entries of real type. In general, array types are meant for
describing dense structures, which means that, in a structure of the
form array[r1, r2, . . . , rk] of T, there is a value of type T on
each of the r1 × r2 × . . .× rk entries. In the case of the Bayesian
Lasso, all the structures in the dataset and random variables happen

to be dense, and therefore the array type is enough to describe
said structures.

Other Compound Types. Other models require sparse, set-based
structures. For instance, some text mining models have a base
dataset consisting of a dictionary of words w1, w2, . . . , wm and
a corpus of documents d1, d2, . . . , dn represented with the struc-
ture z where zi,j is a positive integer denoting the number of times
that word wj appears in document di (the so-called “bag of words”
model). Since the set of words contained in a given document usu-
ally corresponds to a small portion of the whole dictionary, a dense
area array is not an adequate type for representing z. BUDS pro-
vides the map type for such situations. The syntax for declaring a
map is map[d] of T, where d is the name of the key domain. Al-
though similar to array in most respects, map types can only be
defined over a single key domain1 and do not provide the guarantee
that there always exists an entry of type T on each possible entry in
the structure. Thus, this data set would be represented as:

data {
n: range(documents);
w: range(words);
z: array[n] of map[words] of integer;

}

The other compound data type in BUDS is the list type, which
is defined with the syntax list[d] of T, where d is the name of
the indexing domain. The list type is used to represent array-like
structures of variable length, which are useful for sequential ob-
jects, such as time series. In some text mining models, the position
of a word within a document is important, so that each document in
a data set is a variable-length sequence of words from a dictionary.
We might represent such a data set as:

data {
n: range(documents);
w: range(words);
p: range(wpos);
z: array[n] of list[wpos] of value(words);

}

The above code defines each document as a list indexed over the
domain wpos, with a maximum length of p. The value type is
used to denote that each entry is a single value corresponding to the
domain of words, as an integer in {1, 2, . . . ,w}.

3.2 Expressing Computation
Variable Expressions. The expression on the left-hand side of an
<- assignment may be the name of a variable or a reference to a
particular entry in the variable structure using a temporary indexing
variable declared within the context of a block—for instance, sep-
arately applying an assignment expression on the rows of a matrix
or the entries of a vector, as in the case of the Lasso vector τ shown
above. The model statement for sampling τ during the remaining
generations would be as follows:

for (j in 1:p) {
t[j] <- invGauss(sqrt((lam * sig) / b[j]),

lam);
}

Here, the variable expressions t[j] and b[j] make use of the
temporary index variable j, which is defined over the domain of
those variables–that is, regressors. The above block does not

1The reason why only one key domain is allowed is because BUDS
provides specific syntax for accessing the set of keys present in a
structure of type map using the domain name. Nonetheless, defini-
tions of the form map[d1] of map[d2] of . . . are acceptable.
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denote a “loop” in the sequential, procedural-programming sense;
rather, it denotes a series of independent, parallel assignments to
separate entries of the vector t. Therefore, the use of temporary
variables that change state on every iteration of the “loop” or any
form of variable dependence among cells of a compound variable
inside the “loop” are invalid. Let us return to the cities-restaurants
example from Section 2.1, where a user might be tempted to de-
note the conditioning of the probability of the previously-visited
restaurant to zero as follows:
var {
tempD: array[m] of real;
. . .

}
. . .
for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
tempD <- D[c[j]];
tempD[r[j]] <- 0.0;
r[j] <- categorical(tempD);

}

The above code does not compile in BUDS, since it is not possible
to assign a variable to an expression more than once in a loop. Fur-
thermore, given that the order of assignment statements is inconse-
quential in BUDS, it is not possible to ensure that the assignments
on tempD happen “before” r[j] is generated.

There is one case where the use of the temporary variable tempD
is possible in such a loop: as long as each execution of the loop
updates a distinct portion of a compound type. For example:

var {
tempD: array[k,m] of real;
. . .

}
. . .
for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
tempD <- setEntry(D[c[j]], r[j], 0.0);
r[j] <- categorical(tempD);

}

This is valid since tempD and the loop are both defined on the
range k (or, alternatively, in the domain of individuals).

Recursion. Given the declarative semantics of BUDS, variables
are immutable and used to represent the result of a specific com-
putation, rather than the state of the program. As such, any given
variable can only be assigned to a single expression by way of a
model statement. Moreover, model statements can be written in
any order and that, with the exception of initialization statements,
circular references between variables are permitted—in fact, such
references are essential, as they describe the recursive structure of
the computation. Consider the following statements:

init {
W <- f(c);

}
Z <- g(W);
W <- h(Z);

These specify a computation that begins with an initialization of W
using a function that takes constant values as input. Thereafter, new
instantiations of Z and W are iteratively generated using as parame-
ters the previously-generated instantiations of said variables.

Linear Algebra Operations. BUDS includes syntax for perform-
ing linear algebra operations over array types. The addition (“+”)
and subtraction (“-”) operators can be applied on any two com-
pound variables of the same type, and denote entry-wise arithmetic.
The operators .* and ./ work similarly. Arithmetic operations

between compound types and integer and real scalars are al-
lowed, and denote the independent application of the operation on
each element of the compound variables. For example, given the
vectors a and b of length k and the scalar value x, the expression

x1k + (a− b)

can be computed in BUDS as x + (a - b), where a and b are
both of type array[k].

In addition to the operations outlined above, BUDS includes syn-
tax for multiplication between matrices or vectors, possibly com-
bined with transposition. For these operations, BUDS assumes
that any array[k] value denotes a column vector of length k,
and that an array[m,n] denotes a matrix with m rows and n
columns. The multiplication operator * accepts two matrices with
types array[m,k] and array[k,n] and returns a matrix of
type array[m,n]. The transpose-multiply operators ’* and *’
have two applications: first, to allow for matrix multiplications of
the form A>B and AB>, respectively; and, second, as a require-
ment for vector products of the form x>y (inner product) and xy>

(outer product), which is necessary as BUDS treats all array[k]
types as column vectors. For example, the expression AX>ỹ from
the Bayesian Lasso can be represented in BUDS as:

A * (X ’* yy)

where the ’* operator produces an array[p] which, when mul-
tiplied with A on the left-hand side, results in an array[p].

Aggregate Functions. Performing aggregation on compound struc-
tures in BUDS is achieved with the employment of the sum, mean,
var, stdev and count functions. These functions take a struc-
ture defined over the domains d1, d2, . . . , dn and return a structure
defined over the domains d1, d2, . . . , dn−1. In the case where the
structure is defined over a single domain, the result is a real-valued
scalar, with the exception of count which returns an integer. In-
tuitively, BUDS aggregate functions can be understood as SQL ag-
gregates with a Group-by clause that encompasses d1, d2, . . . , dn−1.
Thus, for example, given the matrix X of type array[m,n], the
expression sum(X) returns an array[m] structure where each
entry X[i] equals

∑
j X[i,j].

Consider, for example, the vector ỹ from the Bayesian Lasso,
which is computed by subtracting the mean µY from each element
yi. The BUDS comprehension assignment is straightforward:

yy <- { y[i] - mean(y) | i in 1:n };

3.3 Comprehensions and Parallelism
Any assignment under a for block can be represented using a

comprehension syntax expression [?]. Comprehensions are a cen-
tral feature of the BUDS language and are used to describe com-
pound structures with a set of range definitions. In general, a com-
prehension is an expression of the form

{e|r1, r2, . . . , rk}

and is read as “the collection of all e where r1, r2, . . . , rk”. For ex-
ample, the for blocks shown above are equivalent to the following
assignments using comprehensions:

init {
t <- { invGauss(1, lam) | j in 1:p };

}

t <- { invGauss(sqrt((lam * sig) / b[j]), lam)
| j in 1:p };
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Note that for blocks and comprehensions can be nested arbi-
trarily. Thus, the block

for (i in 1:n) {
for (k in 1:m) {
W[i,k] <- f(Z[i,k]);

}
}

can be represented with the comprehensions

W <- { { f(Z[i,k]) | k in 1:m } | i in 1:n };

which can be abbreviated as
W <- { f(Z[i,k]) | i in 1:n, k in 1:m };

In addition to range definitions of the form vt in vr , compre-
hensions also permit the use of boolean predicates for filtering ele-
ments, so that only the ones that satisfy said predicates are present
in the structure. For example, given the variable y of type array[n],
it is possible to write a comprehension that defines a structure that
only contains the positive values of y as follows:

v <- { y[i] | i in 1:n, y[i] > 0 };

Since the structure defined in the above comprehension will possi-
bly contain less than n entries, it cannot be treated as a dense struc-
ture anymore, and therefore the application of a boolean predicate
on any array structure produces a structure of type map defined
over the same domain. In the case of map and list types, no such
type demotion is applied.

Comprehensions provide many benefits. They are an elegant
construct for describing an entire model as a set of simple assign-
ments in a canonical form that is easy to manipulate during the
latter phases of the translation process. Comprehensions are also
central to the BUDS model of parallelism. Essentially, the range or
right-hand side of the comprehension expression defines the level
of granularity of the computation, so that each instance of the ex-
pression on the left-hand side can be computed independently and
then “collected” together as separate component of a larger struc-
ture. For example, the computation of the vector t from the Bayesian
Lasso is expressed so that the computation of each entry t[j] can
be done independently by invoking the inverse-Gaussian function.

The fact that comprehensions are executed in parallel and do
not allow for dependencies between “iterations” can be a bit dif-
ficult for a programmer. For example, consider a Bayesian Hidden
Markov Model for text (this is one of the models we implement
using BUDS in the experimental evaluation associated with the pa-
per). Since the algorithm for learning such a model requires asso-
ciating hidden states with each word in the text, and those hidden
states have statistical dependencies on their neighbors, it is not pos-
sible to perform this assignment massively in parallel. In this case,
our solution was to implement a user-defined function that operates
on each document as a single, indivisible unit.

4. THE BUDS TRANSLATOR
A fundamental question that one must ask when deciding how to

execute a language such as BUDS is: What is the abstract machine
that will execute a BUDS program?

4.1 Design Considerations
At the highest level, it seems that some sort of relational algebra

engine is the correct execution enivonment for BUDS. A BUDS
program essentially consists of a set of joins, selections, projec-
tions, and aggregations along with external functions that must be
run until convergence to a fixpoint.

This leaves the question of how to obtain and execute the cor-
rect relational algebra program. Modern dataflow systems such as
Hadoop, Spark, Flink, and so on basically expose relational algebra
interfaces, and hence serve as a possible execution environment.
Building a compiler and execution environment directly on top of
one of these systems would require:

1. Translation into relational algebra;

2. optimization of the algebra;

3. execution of the algebra.

Algebraic optimization of a relational agebra computation is ex-
actly what a database query optimizer does. Engineering a modern
database query optimizer is difficult and time-consuming task, and
so it seems to make sense to implement BUDS on top of (at least
the backend of) a relational database system rather than a general-
purpose dataflow engine.

Once this decision is made, there is yet another question to ask:
shoud BUDS be translated directly into relational algebra (which
will then be optimized and executed by the relational database) or
should the target be SQL?

After much thought, we decided on SQL as an intermediate,
rather than relational algebra. The reason is that SQL-to-relational
algebra translation is a difficult task in itself, and the translation
involves many steps that are likely to be repeated in any BUDS
direct-to-relational translation, such as unnesting via magic sets re-
writing []. Presumably, the translation process itself will be a bit
slower using SQL as an intermediate (after all, lexing and parsing
SQL is not free) but this cost can be mitigated by directly gen-
erating an SQL parse tree rather than text, and optimization and
execution are likely to be so expensive anyway that the additional
cost will be negligable.

4.2 Translator Overview
Given these considerations, we designed the BUDS translator so

that it takes as input the stochastic model together with statistics
describing the size of each of the domains referred by variables in
the model, then executes a sequence of steps that produces

• A schema for storing the base dataset in a set of relational
database tables, presented to the user as a series of SQL
CREATE TABLE statements.

• A set of queries for initializing and generating samples for
the variables in the model. For each of the variables, a SQL
statement describing a derived relation is returned.

Performing this translation is a surprisingly difficult task. There
are two key questions that any such translation must address:

1. First, there is typically going to be a mismatch between the
data representation in the source and target SQL database.
For example, in BUDS, data are stored in arrays, maps and
lists, whereas in SimSQL, data are stored in relations. Thus,
the compilation and optimization process must choose a suit-
able and efficient data representation.

2. Second, because SQL is far more general than BUDS, there
are likely going to be operations and data structures in BUDS
whose semantics will be opaque to the target compiler and
optimizer, and thus there are going to be important re-writes
and implementation choices that must be taken care of by the
translation process.
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Figure 3: Architecture of the BUDS translator.

Our central idea is to explore the space of alternative implemen-
tations in the target DSL using an A*-style search algorithm [?].
That is, we first translate the source DSL specification into a target
DSL code whose semantics are equivalent, and then we employ a
series of transformations that move from one target implementation
to another. When an alternative implementation is generated, it is
sent to the target DSL’s optimizer for cost analysis. This idea is
reminiscent of the tactic pioneered by the developers of Microsoft
SQLServer’s AutoTune wizard [?]. The resulting cost is used to
guide the search over possible target language implementations.

The different phases of the BUDS translation process are de-
picted in Figure 3. During the first phase, the code is parsed and
checked for syntactic correctness, and the expressions in each model
statements are checked for type consistency. Thereafter, variable
references in the model are checked for circularity and the initial-
ization statements are verified to confirm that they suffice for start-
ing off the chain. Once the correctness of the model has been veri-
fied, the translator “normalizes” the model by removing temporary
variables and blocks, leaving only stochastic assignments. The nor-
malized model consists of:

• The set of variables corresponding to the base dataset, to-
gether with their data types as described in the data section

• The set of variables associated with stochastic assignments,
together with the expression trees that define how to initialize
and update their values

• The dependency graph outlining the order in which variables
are to be updated each generation.

During the second phase, the translator traverses the space of
possible base dataset schemas for the constant variables and pos-
sible SQL implementations for sampling and updating the values
of the variables. For each solution that the search algorithm evalu-
ates, the translator generates SQL code and passes it to the DBMS’s
query compiler and query optimizer. The query optimizer returns
the execution cost of the solution back to the translator and the pro-
cess is repeated until a solution of minimal cost is obtained and
returned to the user.

5. THE TARGET PLATFORMI: SIMSQL
While in theory we could have chosen any parallel database sys-

tem as the BUDS execution platform, we decided to choose the
SimSQL system [?] as the BUDS target. There are two main rea-
sons for this. First is SimSQL’s support for a very flexible type
of user-defined function called a VG function, which allows rel-
atively complex contructions taking multiple tables as input, and

producing multiple tables as output. Second is SimSQL’s sup-
port for recurively-defined tables, which make it a natural target
for fixpoint computations. Choosing another platform would have
required building such capabilities (or similiar ones) on top of the
system.

One thing missing from SimSQL is native support for vectors
and matrices, which is crucial to producing efficient statistical codes—
enociding such data structures as relations generally results in poor
performance, as our experiments will show.

In the remainder of this section, we give a brief overview of Sim-
SQL’s VG function interface, as well as its support for recursive
computations. We breifly describe our SimSQL extensions for vec-
tors and matrices; a full description can be found in our technical
report on the subject [].

5.1 SimSQL’s SQL
We illustrate SimSQL VG functions as well as recursion by re-

turning to the simulation from Section 2. Let us assume that we
have the following table, which encodes the vector s containing the
starting probabilities for each city:

STARTPROBS(DIM, VAL)

DIM tells us the position in the vector, and VAL is the value in that
position. We also have a table listing all of the people:

INDIVIDUALS(PID)

The first city is chosen using the Categirical VG function as fol-
lows:
CREATE TABLE CITY[0] (PID, CID) AS
FOR EACH i IN INDIVIDUALS
WITH Res AS Categorical (

SELECT * FROM STARTPROBS)
SELECT i.PID, r.CID
FROM Res AS r

Briefly, what this code does is to consider every tuple i in the
INDIVIDUALS table. For each individual, the Categorical
VG function is parameterized with all of the city probabilities from
STARTPROBS, which it uses to select a city at random. This result
is stored in the table Res. For a given i, the final SELECT query
then creates a tuple which is added to the CITY table. In the gen-
eral case, more than one tuple can be added, but here it is exactly
one. The tuples produced by all of the executions of the SELECT
statement (one for each individual) are UNIONed together to create
the CITY[0] relation.

Ignoring (for brevity) how restaurants are selected, we can then
move all of the people to the next city by conditioning on the cur-
rent city. We assume a CITYPROBS(FROM_CID, TO_CID,
VAL) table that encodes the T matrix and gives us the probabil-
ity of transitioning between cities. Then we have:

CREATE TABLE CITY[i] (PID, CID) AS
FOR EACH i IN INDIVIDUALS
WITH Res AS Categorical (

SELECT cp.TO_CID, cp.VAL
FROM CITYPROBS AS cp, CITY[i - 1] AS c
WHERE cp.FROM_CID = c.CID AND c.PID = i.PID)

SELECT i.PID, r.RID
FROM Res AS r

The probabilities that govern the transition to the next city is chosen
by looking at the last city that person i was located in (that is, join
CITY[i - 1] with the tuple i on c.PID = i.PID).

Vectors and Matrices. For the BUDS-to-SQL translation task,
To acheive efficient execution of the code from the BUDS-to-SQL
translation task, it is important that vectors and matrices are sup-
ported as native attribute types. Consider the problem of computing
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a Gram matrix from a list of vectors storing bag-of-words [] encod-
ings of a set of documents (where each distinct word present in the
document is mapped to an entry in the vector). If xi stores the ith
document as a row vector, the gram matrix is computed as

∑
i xTi ·

x. In “vanilla” SQL, with the table DOCUMENTS(DOC_ID, DIM_ID,
VAL) storing the list of vectors, this would be expressed in SQL as:

SELECT SUM (x1.VAL * x2.VAL), x1.DIM_ID, x2.DIM_ID
FROM DOCUMENTS x1, DOCUMENTS x2
WHERE x1.DOC_ID = x2.DOC_ID
GROUP BY x1.DOC_ID

This is expensive, since it requires a join of (potentially) a very
large table, followed ba an aggregation. Further, if each document
averagesm distinct words—m can easily be on the order of 1000—
aggregating n documents requires processing n×m2 tuples output
from the join. This can be debilitating.

In our extension to SQL, we can instead store such vectors in the
table DOCUMENTS(DOC_ID, WORDS) where WORDS is a vec-
tor. The Gram matrix code is simply:

SELECT SUM (OUTER (WORDS, WORDS))
FROM DOCUMENTS

This is much more efficient, requiring a simple scan of the DOCUMENTS
table. The extended SQL also contains facilities for constructing
vectors and matrices. For example, a simple query to construct a
matrix from CITYPROBS(FROM_CID, TO_CID, VAL) is:
CREATE VIEW CITYPROBS_MATRIX (VAL) AS
SELECT ROWMATRIX (MROW)
FROM (SELECT LABEL(VECTORIZE(LABEL(TO_CID, VAL)),

FROM_CID) AS MROW
FROM CITYPROBS
GROUP BY FROM_CID)

Here, the inner query creates a vector for each FROM_CID using
the VECTORIZE aggregate function. These vectors are then la-
beled with their row identifier (the FROM_CID) and aggregated
into a single tuple with a matrix attribute using the ROWMATRIX
aggregate function. Vectors and matrices can be deconstructed as
well:
SELECT c.CNT AS ROW, GET_ROW (c.CNT, cm.VAL)
FROM COUNTS AS c, CITYPROBS_MATRIX AS cm

Here, COUNTS is a system table, containing tuples with values 1,
2, 3, etc.

Note that our extension to SimSQL does not support an array
database model, nor does it support large (out-of-core) matrices
and vectors. It merely supports matrix and vector data types, as
well as natively-supported operations over them.

6. TRANSLATING BUDS MODELS
This section describes in detail how BUDS models are translated

into SQL.

6.1 Compilation
In general, the translation process begins by parsing the input

and performing semantic checks. Next, a dependency graph is cre-
ated. In the case of BUDS, the translator first eliminates all for
blocks to replace them with comprehension expressions, resulting
in a model that consists entirely of simple variable-expression as-
signments. The translator then constructs a graph where each ver-
tex corresponds to a model variable from the data and var sec-
tions and each edge is of the form u → v denoting a reference to
variable v in the expression assigned to variable u. The result is a
directed acyclic graph annotated with iteration numbers. Figure 4
shows the data dependency graph for the Bayesian Lasso. Once the
dependency graph is created, depending on the translation problem,

b(i)

sig(i)

t(i)

Z(i)

A(i) sig(i-1)

t(i-1) yy

lam

X

y

p

n

Figure 4: Data dependency graph for the Bayesian Lasso.

it may be analyzed to check for correctness. In the case of BUDS,
we check if the initialization statements from the init section are
sufficient to initialize all of the variables needed in subsequent it-
erations of the computation. That is, each of the variables with
an (i − 1) super-script must be initialized. Also, there can be no
cycles among variables labeled (i), since this depicts a circular de-
pendency.

After semantic checking, we are ready to begin the translation.

6.2 Moving Among Data Representations
Programmers in BUDS choose from data structures such as ar-

rays, matrices, maps, etc. One of th emost iportant tasks in the
translation process is choosing how these data structures can be rep-
resented in the underling relational/linear model. For example, the
matrix D from BUDS in our city-and-restaurants model can be rep-
resented in SimSQL’s SQL using four possible different schemas:

1. A table with n ×m records, each containing a double at-
tribute with the value of the cell Di,j , an integer attribute
with the key value for city i, and another integer attribute
with the key value for restaurant j; or,

2. A table with n records, each containing a vector attribute
of sizem with the values of the row vector Di, and an int-
eger attribute with the key value for city i; or,

3. A table with m records, each containing a vector attribute
of size n with the values of the column vector

(
D>
)
j
, and

an integer attribute with the key value for restaurant j; or,
4. A table with a single record containing a matrix attribute

of size m,n with the entire contents of D.

It is incumbant upon the tranlation framework to choose a suitable
representation—one that can be implemented efficiently by the un-
derlying platform.

The most fundamental data structure used to move among repre-
sentations to choose the optimal one is the type graph, which is a
directed graph where an edge between two types indicates that it is
possible to generate code that directly moves between them. Since
certain types are incompatible with one another, this graph is al-
most assuredly going to be disconnected for most translation tasks.
A small subset of the BUDS-to-SimSQL typeGraph relation is
depicted in Figure 5. This shows four possible representations for
a matrix (or two-dimensional array) in BUDS.
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Figure 5: Type graph over possible representations of the ma-
trix variable X.

Each edge in this graph has an associated eSQL code template
associated with it, that can be used to generate the code associated
with the movement between types. We describe how the type graph
is used to move among various eSQL representations for a BUDS
type logically, using Datalog (in our actual BUDS implementation,
we use Prolog).

The codes associated with edges in the type graph are repre-
sented in Datalog via the relation:

xformImp(InType, OutType, InName, OutName, Str).

An entry in this relation means that it is possible to transform
the variable InName of type InType into the variable OutName
of type OutType using the code contained in the string Str. For
example, consider the edge from v1 to v2 in Figure 5. We have
the corresponding Datalog rule (note that In Datalog rules we use
the convention that identifiers beginning with lower-case letters are
literals, and those with upper-case are variables; + refers to the
string concatenation operation):

xformImp(v1, v2, InName, OutName, Str) :- Str =
"CREATE VIEW " + OutName +
"AS SELECT inp.id_n AS id_n, VECTORIZE(

LABEL(inp.val, inp.id_p)) AS val
FROM " + InName + " AS inp
GROUP BY in.id_n;".

This rule describes how the actual code string Str is constructed
by inserting the InName and OutName into the eSQL code. As
described previously, the special-purpose SimSQL aggregate func-
tion VECTORIZE takes a set of labeled numeric attribute values
and creates a single vector type, indexed using the each value’s
label as assigned using the LABEL function.

We can go the other direction as well. Here is the rule for the
edge from v2 to v1:

xformImp(v2, v1, InName, OutName, Str) :- Str =
"CREATE VIEW " + OutName + " AS
SELECT inp.id_n AS id_n, r.id_p AS id_p,

GETSCALAR (inp.val, r.id_p) AS val
FROM " + InName + " AS inp, responses AS r;".

Here, the table responses contains p records with the key values
of id_p, which are used by the GETSCALAR function to obtain
individual entries from the vector value v2.val.

We not only want to be able to traverse one edge in the type graph
to change representations, but we want to be able to take multiple
hops. If a path from InT to OutT exists, we can generate code for
it using the following rule:

X

A

yy

tmul

mul

Figure 6: Expression graph for part of the Bayesian Lasso.

xformImp(InT, OutT, InName, OutName, Str) :-
Str = xformImp(InT, IntmedT, inName, temp) +

xformImp(IntmedT, OutT, temp, outName),
temp = inName + outName.

Here, inName + outName is used to create a unique identifier
for the table holding intermediate results. For example, the func-
tion call xformImp(v1, v1, inName, outName) will re-
turn the following code string:

CREATE VIEW inNameoutName
AS SELECT inp.id_n AS id_n, VECTORIZE(

LABEL (inp.val, inp.id_p)) AS val
FROM inName AS inp;
GROUP BY in.id_n;

CREATE VIEW out
AS SELECT inp.id_n AS id_n, r.id_p AS id_p,

GETSCALAR(inp.val, r.id_p) AS val
FROM inNameoutName AS inp, responses AS r;

6.3 Searching for Implementations
The translator must not only be able to search among data repre-

sentations, it must search among implementations of BUDS opera-
tors that run over those representations, and apply those implemen-
tations. Implementations may be good sometimes, but not all of
the time. For example, a direct eSQL matrix multiply that is imple-
mented as a call to BLAS is likely optimial for large matrices that
are small enough to fit in memory. But it will fail for very large
matrices. All of these options must be considered systematicaly
during search.

We do this using an abstraction called an expression graph. This
is an expanded version of the data dependency graph, where (in ad-
dition to all named variables) dependencies among all temporary
variables (that exist only as the output of particular operations) ap-
pear as well. Vertices without and input edges (which we will call
“leaf” vertices, through we may not have a tree) represent data (in
the case of BUDS, they are variables from the data and var sec-
tions of the program) and non-leaf vertices represent operations.
Edges represent flows among operations. For example, in the case
of BUDS, consider the expression graph for the following portion
of the Bayesian Lasso:

A * (X ’* yy)

The corresponding expression graph is shown in Figure 6.
To describe how this graph is used to power the search for im-

plementations, we will ignore how user-defined function calls are
handled; these have an arbitrary number of parameters and hence
make the presentation a bit more muddled. Excluding these, the
graph can be represented as three Datalog relations:
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leafNode (VarName, Type).
unNode (OpName, InName, OutName).
binNode (OpName, LName, RName, OutName).

These relations have the obvious meaning. leafNode lists the
leaf nodes in the graph, unNode lists the unary, internal nodes
in the graph, and binNode lists the binary nodes. For the later
two operations, OpName is the name of the operation that needs to
be run (such as tmul), and the various Name parameters give the
names of the variables in the graph.

For each particular operation, we have one or more implementa-
tions, encoded in the following relations:‘

binImp (OpName, TypeL, TypeR, OutType, LName,
RName, OutName, Str).

unImp (OpName, TypeIn, OutType, InName,
OutName, Str).

These relations are analogous to the xformImp relation in that
they provide code for moving between types. Node that since oper-
ations are polymorphic (for example, matrix multiplication can be
defined over many input types) there may be many entries in the
relation for each operation name—implementations may operate
of different input types and produce different output types, though
they are all doing the same computation. For example, we may
have an implementation of tmul that accepts two sets of vectors,
and another that accepts two matrices.

The various Imp relations store for us all available implementa-
tions, but we need a way to store instantiated implementations as-
sociated with out particular translation problem. The relation imp
(Type, Name, Str) will accomplish this, storing for us in the
string Str for all available implementations of the node with name
Name, where the result takes the type Type. This relation is de-
fined as follows. The first two rules simply abstract away whether
the operation is unary or binary, and allow us to simply obtain its
implementation code:

imp (Type, Name, Str) :-
binImp (OpName, TypeL, TypeR, Type, LName,
RName, Name, Str).

imp (Type, Name, Str) :-
unImp (OpName, TypeIn, Type, InName,
Name, Str).

One avialble implementation is to do nothing, if we have a leaf
node:
imp (Type, Name, Str) :- leafNode (Name, Type, "").

And we can possibly run a code to perform a type transformation:

imp (Type, Name, Str) :-
imp (InT, Name, InStr), InName = Name + Type,
xformImp(InT, T, InName, Name, TransStr),
Str = InStr + "ALTER VIEW " + Name " RENAME TO "

+ InName ";" + TransStr.

We can then use these implementations in conjunction with specific
definitions of binImp and unImp to build up all possible code
strings for a given query graph. For example, consider the operation
tmul where a matrix is transposed and multiplied with a vector. If
the input matrix is represented as a relation of tuples containing
vectors (type v2) and the input vector is represented as a set of
tuples containing double values (imagine this is type v12), then
we might have the following rule in binImp:

binImp (tmul, v2, v12, v2, LVar, RVar, OutVar, Str)
:- imp (v2, LVar, LStr), imp (v12, RVar, RStr),
binNode (tmul, LVar, RVar, OutVar),
Str = LStr + RStr + "CREATE VIEW " + outVar +
"AS SELECT SUM(X.val * yy.val) AS val

FROM " + lVar + " AS X, " + rVar + " AS yy
WHERE X.id_n = yy.id_n;".

This simply performs a vector-scalar multiply on each entry, then
sums the result to obtain the output, which is a single tuple con-
taining a vector. Or, a simple matrix transpose directly on a set of
matrices will use the rule:
unImp (trans, v3, v3, InVar, OutVar, Str) :-
imp (v3, InVar, InStr),
unNode (trans, InVar, OutVar),
Str = InStr + "CREATE VIEW " + outVar +
"AS SELECT TRANSPOSE(X.val) AS val
FROM X AS " + inVar + ";"

Note that this code creates a unary operator (such as a matrix trans-
pose) as two separate queries; the SQL query that creates the ma-
trix to be transposed, and the query to transpose the matrix. This
may seem costly. However, SimSQL aggressively pipelines such
queries, meaning that the set of matrices produced by the first query
would be pipelined directly into the transpose operation, expectedly
at little cost.

6.4 Encoding Domain Specific Optimizations
One tremendous advantage of performing optimizations on a spe-

cialized, declarative DSL such as BUDS (as opposed to a more
general-purpose DSL such as eSQL) is that encoding domain-specific
optimizations is easy. For example, consider the case of a Gram
matrix computation over a matrix: XXT , which corresponds to a
unary tmul operation. Many different implementations of this
computation are available. While the direct computation XXT is
typically desirable because SimSQL will use BLAS to implement
it directly, sometimes this implementation is not possible because
X is too large to fit into RAM.

As an alternative, X can be represented as a set of vectors, and the
Gram matrix computed as

∑
i xTi · x. This special transformation

can be represented as a Datalog rule:

unImp (tmul, v4, v4, InVar, OutVar, Str) :-
imp (v4, InVar, InStr),
unNode (tmul, InVar, OutVar),
IntName = InVar + OutVar,
xformImp(v4, v2, InName, IntName, TransStr),
Str = InStr + TransStr +
"SELECT SUM (OUTER (val, val))
FROM " + IntName + ";"

This rule basically says that we can obtain a pure-matrix to pure-
matrix tmul operation by first transformuling the pure matrix to a
set of vectors, and then performing a SUM of outer products.

6.5 Implementation Details
The previous subsection described how all possible implementa-

tions for a given source DSL can be produced. As described previ-
ously, the tactic that we employ is to generate each of those possible
implementations, send each to SimSQL’s optimizer to cost them,
and then we actually run the most inexpensive implementation. We
rely on the optimizer—which has information about array sizes, if
they are available—to detect infeasible implementations, such as
the materialization of a huge matrix that cannot fit into RAM.

Another issue is that in practice, there may be many thousands
of valid implementations, and it is not practical to generate and
cost each of them (see the experimental section for an example of
this, where for a Bayesian Gaussian Mixture Model, there were
1,214 SimSQL implementations). Thus, in practice, it is going to
be necessary to add some sort of search heuristic. We have imple-
mented an A*-style search, and found that in fact, a purely greedy
algorithm works very well. The greedy search works as follows.
We maintain a single best implementation, and then use the rules
described in the previous subsections to generate all possible im-
plementations reachable by changing one implementation or data
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data {
n: range(points);
d: range(dims);
k: range(clusters);
X: array[n,d] of real;
prMix: array[k] of real;
prMean: array[d] of real;
prCovar, prScale: array[d,d] of real;
prDegrees: integer;

}

var {
mix, ccount: array[k] of real;
means, cmean: array[k,d] of real;
covars, csum: array[k,d,d] of real;
Z: array[n] of integer;

}

init {
mix <- dirichlet(prMix);
for (j in 1:k) {
covars[j] <- invWishart(prScale, prDegrees);
means[j] <- normal(prMean, prCovar);

}
}

for (i in 1:n) {
Z[i] <- categoricalGMM(mix, X[i], means, covars);

}

for (j in 1:k) {
ccount[j] <- count({ Z[i] | i in 1:n, Z[i] = j });
csum[j] <- sum({ outer(X[i] - means[j]

| i in 1:n, Z[i] = j });
cmean[j] <- mean({ X[i] | i in 1:n, Z[i] = j });

covars[j] <- invWishartGMM(prScale, prDegrees,
csum[j], ccount[j]);

means[j] <- normalGMM(prMean, prCovar,
covars[j], ccount[j], cmean[j]);

}
mix <- dirichlet(prMix + ccount);

Figure 7: BUDS specification for the Gaussian Mixture Model’s
MCMC algorithm.

representation. Each of those is costed, and the lowest-cost alter-
native is chosen as the new implementation. This is repeated until
the implementation cannot be improved.

7. EXPERIMENTAL EVALUATION
The BUDS compiler/optimizer prototype is currently implemented

around 17,000 lines of Java and Prolog. It accepts as input a BUDS
program, and then produces as output a SimSQL SQL program.
Our current implementation has 16 different SQL representations
of BUDS data types available (examples include: a matrix stored
purely as tuples, a matrix stored as a set of vectors, a map stored
purely as tuples, etc.), and 57 different SQL implementations of
built-in BUDS operations (examples include: a pure matrix inverse,
scalar-vector-as-tuple multiplication, etc.), as well as 26 different
distribution functions (vector-based Dirichlet distribution, tuple-
based Categorical distribution, etc.).

In this section, we describe an experimental evaluation of the
performance of the BUDS language and compiler for a set of rep-
resentative Bayesian machine learning problems. The key question
will be how BUDS-encoded programs compare performance-wise
to programs written directly in SQL.

Model Mode Search Space Size Opt. Time
BL full 78 codes 00:08:57
BL greedy 4 codes 00:00:33
GMM full 1214 codes 08:54:27
GMM greedy 48 codes 00:20:34
LDA full 224 codes 00:15:22
LDA greedy 24 codes 00:01:37
HMM full 32 codes 00:01:51
HMM greedy 8 codes 00:00:27

Table 1: Summary of optimization complexity for the four
models. For each model, and for each optimizer mode (full
search or greedy search) we give the number of SimSQL codes
generated by the BUDS translator, as well as the time taken to
generate and cost all of those codes (HH:MM:SS).

7.1 Experimental Overview
Since BUDS is translated into SimSQL’s SQL, we being by hand-

coding one or two implementations of each machine learning algo-
rithm directly in SimSQL’s SQL as a baseline.

These hand-coded implementations typically include one naive
implementation and one carefully-tuned implementation, subject
to the constraint that our hand-coded implementations do not di-
rectly use vectors and matrices to store and manipulate data, in-
stead, a purely tuple-based encoding is used (for example, a 100
by 100 matrix is always stored as 10,000 tuples in the hand-coded
implementations).2 We then experimentally compare the compu-
tational efficiency of these hand-coded baseline implementations
with the implementation produced by the BUDS translator—both
before and after the BUDS translator optimizes the generated code.
Since BUDS is free to choose vector- and matrix-based implemen-
tations for the various algorithms, in the ideal case, one might hope
that the BUDS codes would outperform the hand-coded implemen-
tations. At the very least, one would hope that they will be no
slower than the hand-written code.

All running times reported were obtained by running the Sim-
SQL SQL codes using SimSQL running on a cluster of five Ama-
zon EC2 m2.4xlarge machines.

7.2 Models Tested
Our experiments focus on the implementation of Markov Chain

simulations for learning the following for Bayesian models:

Bayesian Lasso. The BL has already been described previously,
and the BUDS code for the model was given earlier as well. To
evaluate the various implementations, we created a synthetic data
set consisting of five million data points distributed across the five
machines, having 1,000 regressor dimensions each.

Gaussian Mixture Model. The GMM is a standard model for un-
supervised data clustering. The model assumes that the data set
to be processed was generated by a mixture of Gaussians (multi-
dimensional normal distributions) and the task is to recover the
various components from the data. We learn a Bayesian variant
of this model (see [?] for details). The full BUDS code for learn-
ing this model is given in Figure 7. To evaluate the various im-

2We choose to use tuple-based implementations as a baseline be-
cause in a previous paper [?] we evaluated the performance of such
tuple-based SimSQL codes vis-a-vis codes written for several other
platforms, such as as GraphLab and Giraph. Hence, one can use
such a tuple-based baseline in conjunction with those previous re-
sults to guess how a BUDS code might compare to a code written
natively on one of these platforms.
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Model Implementation Code Lines Run Time
BL Naive SQL 100 00:07:28 (02:38:46)
BL Vector/Matrix SQL 104 00:04:04 (00:04:44)
BL BUDS no-opt 30 00:13:41 (02:41:25)
BL BUDS opt 30 00:05:58 (00:20:22)
GMM Naive SQL 197 00:21:16 (00:11:22)
GMM Block SQL 161 00:06:39 (00:13:08)
GMM Vector/Matrix SQL 111 00:09:15 (00:08:09)
GMM BUDS no-opt 39 00:20:27 (00:14:02)
GMM BUDS opt 39 00:11:12 (00:11:35)
LDA Naive SQL 126 14:32:04 (08:45:14)
LDA Doc-based SQL 117 04:12:37 (03:59:26)
LDA Vector/Matrix SQL 101 00:29:28 (00:01:13)
LDA BUDS no-opt 31 13:54:32 (17:13:55)
LDA BUDS opt 31 00:30:21 (00:53:58)
HMM Naive SQL 131 08:17:07 (10:51:32)
HMM Doc-based SQL 123 03:36:47 (00:17:51)
HMM Vector/Matrix SQL 122 00:28:17 (00:26:28)
HMM BUDS no-opt 33 00:45:32 (01:08:28)
HMM BUDS opt 33 00:30:08 (00:05:52)

Table 2: Performance and code size of the various implemen-
tations. All times are given as HH:MM:SS per iteration. The
value in parens is the time for the initialization iteration.

plementations, we use a ten clusters to process a ten-dimensional
data set, using a full covariance matrix. Fifty million synthetically-
generated data points are distributed across the five machines. Note
that two SQL implementations are tested: a naive implementation,
and a second, highly-optimized implementation that updates the
membership of a large block of data points using a single user-
defined function call (again, see [?] for more details).

Latent Dirichlet Allocation. LDA is a very standard topic model
for unsupervised learning over text. The model assumes that a tex-
tual document is produced by a mixture of “topics”, which are es-
sentially vectors that control the frequency or prevalence of each
word in the topic. We use a non-collapsed Gibbs sampler to learn
this model (again, see [?] for details). For brevity, we do not give
the BUDS code. 12.5 million documents are distributed across the
five machines. A dictionary size of ten thousand words is used
to learn 100 topics. Again, we have two SQL implementations:
a naive implementation, and a second, optimized implementation
that has a special user-defined function that determines the word-
topic membership for each word in the document using a single
function invocation. The BUDS implementation assumes a similar
user-defined function.

Hidden Markov Model. Here we learn a Bayesian HMM over
text. The data used are identical to the data used for LDA, but in
the case of a HMM, 20 latent states are used. As in LDA, we have
two SQL implementations: a naive implementation, and a second,
optimized implementation that has a special user-defined function
that determines the assignment of states to words all-at-once for
a single document. In the case of BUDS, a similar user-defined
function is used.

7.3 Results and Discussion
For each of the four models, we give the search space size and

optimization time in Table 1. The search space size is the number of
distinct expression graphs that can be generated using the current
set of BUDS data representations and implementations. We also
have the optimization time (that is, the time to search the space)

for two different search strategies: full and greedy. The full strat-
egy exhaustively enumerates all alternatives. The greedy strategy
repeatedly chooses the best Datalog rule to fire (“best” in terms of
the rule that results in the expression graphs with the lowest cost
according to the SimSQL optimizer) until the expression graph can
no longer be improved. Interestingly, in each case, the greedy strat-
egy resulted in the optimal expression graph being found.

In Table 2 we give the per-iteration running time and code size
for each of the different implementations tested. All of the imple-
mentations are equivalent in the sense that they run the same algo-
rithm; the only difference is in the details of the implementation
and hence in the running time.

There are a few interesting findings. First, in every case, the
SQL code produced by the BUDS compiler without optimization
performs just about as well as the naive SQL code written by hand.
This is to be expected: “naive” here means that the most obvious
encoding of the problem has been chosen by the programmer.

In every case, the optimization process is able to arrive at a data
representation and implementation that is far superior, and outper-
forms even the optimized, hand-coded versions (which are con-
strained to only use the pure tuple-based encoding of the various
data structures). For example, through optimization, BUDS de-
cides to encode set of mean vectors sent to the categoricalGMM
function as a matrix, and the set of covariance matrices sent to this
function are encoded as a relation containing tuples with matrix
attributes. The cost of parameterizing this function is radically re-
duced because of the much smaller number of parameters. It is
interesting to note that in every case, the optimized BUDS imple-
mentation was superior to the others—the one exception being the
block-based GMM. In this implementation, a special version of the
categoricalGMM function is used that is parameterized only
once for a block of data points, meaning that the cost of the pa-
rameterization is amortized across many data points, resulting in
a highly efficient implementation. This sort of optimization is not
available to the BUDS compiler.

8. RELATED WORK
The development of the BUDS language is related to existing

research in probabilistic programming languages. “Probabilistic
programming” languages, broadly defined, are any languages that
naturally express or compute over probabilities or stochastic pro-
cesses. There has been a lot of recent work in this area, includ-
ing general-purpose languages such as Church [?] and ProbLog
[?]. Other efforts include existing languages such as BUGS [?]
and Stan [?], and libraries such as Factorie [?] and Infer.NET [?].
One key difference between these efforts and BUDS, however, it
that BUDS is specifically focused on very large scale probabilistic
computations. We also focus on executing on top of a declarative
DSL such as SQL. These other systems are typically concerned
with program synthesis and execution at a very small scale.

BUDS bears some resemblance to mathematical programming
languages such as R and MATLAB. Notable efforts aimed at scal-
ing such languages include Ricardo [?] and Riot [?]. SystemML
[?] from IBM has a custom-designed scripting language that looks
a lot like these languages, and it is also scalable.

There have been some notable recent efforts at designing declar-
ative systems for machine learning [?]. Again, our work differs in
that we are interested in executing on top of an existing system,
rather than architecting a new one.

MADLib [?] is a set of machine learning algorithms imple-
mented using SQL. This is similar in spirit to the work presented
here, except that the codes in MADLib are all hand-written.
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Some of the most closely related work are the efforts in array
databases. The lack of structures such as vectors and matrices has
been identified as a key reason behind the limited acceptance of re-
lational databases in scientific applications [?]. Previous work from
the database literature aimed at integrating such structures into the
query language and query processing began with the development
of the Nested Relational Calculus for Arrays [?] which allowed for
a high-level query language based on the syntax of comprehensions
[?]. In fact, comprehensions were highly influential in the design of
the BUDS language. Some of the advantages of the syntax of com-
prehensions are that it allows for elegantly describing collections
such as arrays and sets using queries, its close relationship with re-
lational algebra and SQL [?], and that that it can be translated into
SQL easily, as shown by approaches like the RAM algebra [?, ?].
This latter work is probably the related work closest to our own,
but there are some key differences. While that work was primarily
concerned with synthesizing purely tuple-based relational codes,
we are interested in searching through multiple possible transla-
tions, including native matrix and vector representations. Another
is the focus in BUDS on iterative, large-scale computations, which
is quite different from the focus on algebraic operations over ar-

rays. Other notable array database systems include SciDB [?] and
SciHadoop [?].

Note that there have been efforts to scale up statistical computing
platforms such as MATLAB and R [?, ?], and IBM’s SystemML
[?] supports a MATLAB like language for cluster computing. Cru-
cially, these systems are not delcarative.

9. CONCLUSIONS
We have argued that the need for specialized, declarative domain

specific languages (DSLs) for data analytics does not require the
development of new computational platforms. Instead, we argued
for leveraging the general DSLs provided by such platforms us-
ing compilation and optimization techniques. We have presented
BUDS as an example of a highly-specialized DSL for Bayesian
machine learning, and described techniques for compiling BUDS
codes into a general data processing DSL which, in our proof-of-
concept implementation, is the variant of SQL used in SimSQL
for describing Markov chain Monte Carlo simulations. In our em-
pirical evaluation, we wrote BUDS code for a variety of Bayesian
machine learning algorithms, and measured the performance of the
resulting SQL implementations in a distributed setting.
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