Prof. Chris Jermaine
cmj4(@cs.rice.edu




Now That We’re About To Hand A2 Back...

o Let’s look at the space of possible designs
 Perhaps we can put all designs on a spectrum

00

!\Iothing Everything
IN abstract IN abstract




Now That We’re About To Hand A2 Back...

o Let’s look at the space of possible designs
 Perhaps we can put all designs on a spectrum

@)

!\Iothing Everything
IN abstract IN abstract

» \Where are appropriate A2 designs?
— Probably in here




What Was Almost Mandatory in the Abstact?

toString O
getRoundedltem ()

* Why?
— Imp seems to not depend in any way on underlying data representation

— Can easily imp in terms of other ops in the interface
— “toString” ex:

try {
String returnvVal = new String (''<");

for (int i = 0; i < getLength ); i++) {
Double curltem = getltem (1);
it (i 1= 0)
returnvVal = returnval + ', ";
returnVal = returnVal + curltem.toString ();

}

returnvVal = returnval + ">";




Also Should Have Put getLength There

e Since If you don’t you end up maintaining actual length (at least
Implicitly) in both

SO put it In the abstract
e Set it via a call to “super”




Was This the Best Design?

 Probably not, though no points were taken for this
 \WWhat else should have gone in the abstract class?




Was This the Best Design?

 Probably not, though no points were taken for this
 \WWhat else should have gone in the abstract class?

— The logic to deal with backing values and dividing everyone by a value
* Why?

— In the concrete, you end up repeating the same (bug prone!) logic everywhere




What Else To Put in the Abstract

 The backing value/delta, a multiplier, and logic to deal with it
 \Would make sense to have the following in abstract:

private double delta;
private double mult;
private int len;

// these will be called by the concrete to map/unmap vals

// takes a val from outside world, converts into internal
protected double mapValue (double mapMe) {
return (mapMe - delta) * mult;}

// takes an internal val, converts into outside world val
protected double unMapValue (double unMapMe) {
return (mapMe /7 mult) + delta;}




All of the Concrete Ops Now Call Map Funcs

public double getltem (int 1) throws ... {
// code here to extract the value at pos 1

// then un-map i1t
return unMapValue (value);

}

public double setltem (int 1, double setToMe) throws ... {
setToMe = mapValue (setToMe);
// code here to set the value at pos 1




And addToAll Goes Into Abstract

private double backingValue;
private double mult;
private int len;

public void addToAll (void addMe) {
delta += addMe;

}




And addToAll Goes Into Abstract

private double backingValue;
private double mult;
private int len;

public void addToAll (void addMe) {
delta += addMe;

}
* Plus, you have a “multAlIBy” in abstract so you can implement
normalize in the concrete

protected void multAllBy (double multiplier) {
mult /= multiplier;
delta *= multiplier;

}
* An then constructor becomes:

protected ADoubleVector (double initval, int vecLen) {}

@




That Would Have Been a Great Design

 But probably OK to go even further!

 Say you decided only public methods in concrete are “addMyself-
ToHImM”, “getltem”, and “setltem”

e How to do this? Many ways...

* One is to have a protected abstract “splitSum” routine:
protected abstract SplitResult splitSum (double divLine);

— This avgs/counts the stored values, partitioning above and below “divLine”

 “SplitResult” has:

public double getAvgLo );
public double getAvgHi (;
public 1nt getCountLo ();
public 1nt getCountHi ();




Then ILINorm Is In Abstract

public double I1Norm () {
SplitResult myRes = splitSum (delta * mult);
return unMapValue (myRes.getAvgHi ()) * myRes.getCountHi () -
unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
unMapValue (0.0));




Then ILINorm Is In Abstract

public double I1Norm () {
SplitResult myRes = splitSum (delta * mult);
return unMapValue (myRes.getAvgHi ()) * myRes.getCountHi () -
unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
unMapValue (0.0));

}
e And so Is normalize:

public double normalize () {
SplitResult myRes = splitSum (Double.POSITIVE_ INFINITY);
double tot = unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
unMapValue (0.0));
mult *= tot;
delta /= tot;

3
« And then “multAllIBy” goes away




When Have You Gone Too Far?

* When you find yourself designing methods in the abstract that
somehow take into account imps in the concrete

» Obvious example:

— You start checking the subclass type to see what you’re gonna do

e But it can be more subtle

— For example, were my “I1Norm”, “normalize” appropriate?
— Implementation did leak up a bit, since aware that not all vals will be explicit
— Was this a bad design?




Questions?




