
1

A POST-MORTEM OF A2

Prof. Chris Jermaine
cmj4@cs.rice.edu

2

Now That We’re About To Hand A2 Back...

• Let’s look at the space of possible designs
• Perhaps we can put all designs on a spectrum

Everything
in abstract

Nothing
in abstract

3

Now That We’re About To Hand A2 Back...

• Let’s look at the space of possible designs
• Perhaps we can put all designs on a spectrum

• Where are appropriate A2 designs?
— Probably in here

Everything
in abstract

Nothing
in abstract

4

What Was Almost Mandatory in the Abstact?

toString ()
getRoundedItem ()

• Why?
— Imp seems to not depend in any way on underlying data representation
— Can easily imp in terms of other ops in the interface
— “toString” ex:

 try {
 String returnVal = new String ("<");
 for (int i = 0; i < getLength (); i++) {
 Double curItem = getItem (i);
 if (i != 0)
 returnVal = returnVal + ", ";
 returnVal = returnVal + curItem.toString ();
 }
 returnVal = returnVal + ">"; ...

5

Also Should Have Put getLength There

• Since if you don’t you end up maintaining actual length (at least
implicitly) in both

• So put it in the abstract
• Set it via a call to “super”

6

Was This the Best Design?

• Probably not, though no points were taken for this
• What else should have gone in the abstract class?

7

Was This the Best Design?

• Probably not, though no points were taken for this
• What else should have gone in the abstract class?

— The logic to deal with backing values and dividing everyone by a value

• Why?
— In the concrete, you end up repeating the same (bug prone!) logic everywhere

8

What Else To Put in the Abstract

• The backing value/delta, a multiplier, and logic to deal with it
• Would make sense to have the following in abstract:
private double delta;
private double mult;
private int len;

// these will be called by the concrete to map/unmap vals

// takes a val from outside world, converts into internal
protected double mapValue (double mapMe) {
 return (mapMe - delta) * mult;}

// takes an internal val, converts into outside world val
protected double unMapValue (double unMapMe) {
 return (mapMe / mult) + delta;}

9

All of the Concrete Ops Now Call Map Funcs

public double getItem (int i) throws ... {
 // code here to extract the value at pos i
 ...
 // then un-map it
 return unMapValue (value);
}

public double setItem (int i, double setToMe) throws ... {
 setToMe = mapValue (setToMe);
 // code here to set the value at pos i
 ...
}

10

And addToAll Goes Into Abstract

private double backingValue;
private double mult;
private int len;

public void addToAll (void addMe) {
 delta += addMe;
}

11

And addToAll Goes Into Abstract

private double backingValue;
private double mult;
private int len;

public void addToAll (void addMe) {
 delta += addMe;
}

• Plus, you have a “multAllBy” in abstract so you can implement
normalize in the concrete

protected void multAllBy (double multiplier) {
 mult /= multiplier;
 delta *= multiplier;
}

• An then constructor becomes:
protected ADoubleVector (double initVal, int vecLen) {}

12

That Would Have Been a Great Design

• But probably OK to go even further!
• Say you decided only public methods in concrete are “addMyself-

ToHim”, “getItem”, and “setItem”
• How to do this? Many ways...
• One is to have a protected abstract “splitSum” routine:
protected abstract SplitResult splitSum (double divLine);

— This avgs/counts the stored values, partitioning above and below “divLine”

• “SplitResult” has:
public double getAvgLo ();
public double getAvgHi ();
public int getCountLo ();
public int getCountHi ();

13

Then l1Norm Is In Abstract

public double l1Norm () {
 SplitResult myRes = splitSum (delta * mult);
 return unMapValue (myRes.getAvgHi ()) * myRes.getCountHi () -
 unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
 Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
 unMapValue (0.0));
}

14

Then l1Norm Is In Abstract

public double l1Norm () {
 SplitResult myRes = splitSum (delta * mult);
 return unMapValue (myRes.getAvgHi ()) * myRes.getCountHi () -
 unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
 Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
 unMapValue (0.0));
}

• And so is normalize:
public double normalize () {
 SplitResult myRes = splitSum (Double.POSITIVE_INFINITY);
 double tot = unMapValue (myRes.getAvgLo ()) * myRes.getCountLo () +
 Math.abs ((len - myRes.getCountHi () - myRes.getCountLo ()) *
 unMapValue (0.0));
 mult *= tot;
 delta /= tot;
}

• And then “multAllBy” goes away

15

When Have You Gone Too Far?

• When you find yourself designing methods in the abstract that
somehow take into account imps in the concrete

• Obvious example:
— You start checking the subclass type to see what you’re gonna do

• But it can be more subtle
— For example, were my “l1Norm”, “normalize” appropriate?
— Implementation did leak up a bit, since aware that not all vals will be explicit
— Was this a bad design?

16

Questions?

