
1

IMMUTABILITY, FUNCTIONAL PROGRAMMING

Prof. Chris Jermaine
cmj4@cs.rice.edu

2

A Few Words On References

• Repetedly made the case: references are difficult to reason about
• Why? It’s the same old story...

— Method method1 creates an object called obj1
— Puts a reference to obj1 into container object obj2 (aliasing!)
— method1 calls method method2, passes (as a param) a reference to obj2
— method2 gets the reference to obj1 via the obj2 parameter; updates obj1
— method2 completes execution
— Back in method1, obj1 has changed, though method1 never sent it as a param!
— When you debug, it looks like magic...

3

How To Deal With This?

• Classic solution:
— Make all of your objects “immutable”
— That is, unchangable after initialization
— So (in Java) all member variables are “final”

• Many basic Java types are immuatable
— Strings, integers, doubles

• Why does this help?
— Aliasing can’t be a problem if you can’t update object state, right?
— No one can ever change a value out from under you!

4

But How Do You Write Programs?

• OK, having the little built-in types be immutable is fine
• But can you make more interesting types immutable?

— Ex: how to insert into a container
— Does that not change the state of a container?

• It’s actually easy
— Especially if you are not too concerned with performance
— Just make every method a function (in the purest mathematical sense)
— A function is equivalent to a map
— Takes an input tuple (set of params)
— Maps it to an output object
— No alteration of input in a function... it’s just a map!

5

“Function Heads” Take This to the Extreme

• They argue no assignment after intialization
— Ever!
— Will come back to this shortly

6

Example “Functional” Linked List

• Remember this?
interface ListWRemove <T extends Comparable <T>> {
 // insert an item into the list
 public void insert (T insertMe);

 // remove a specific item
 public T remove (T removeMe);

 // print the list so the first item inserted is first
 public void print ();
}

7

Example “Functional” Linked List

• Here’s the functional version
interface ListWRemove <T extends Comparable <T>> {
 // insert an item into the list
 public ListWRemove <T> insert (T insertMe);

 // remove a specific item
 public Tuple <T, ListWRemove <T>> remove (T removeMe);

 // print the list so the first item inserted is first
 public void print ();
}

• Few notes
— Every method returns result, does not change input params
— We assume we have a “Tuple” generic that allows two things to be returned
— Note the “void” type on print... true function-heads hate I/O!

Term used lovingly!

8

To Imp This, Need a Node

abstract class GenericNode <T extends Comparable <T>> {

 // insert an item into the list, returns new list
 public GenericNode <T> insert (T insertMe);

 // remove a specific item, return the resulting list
 public Tuple <T, GenericNode <T>> remove (T removeMe);

 // print the list so the first item inserted is first
 public void print ();
}

9

Concrete For End-Of-List Is Easy

class EndNode <.> extends GenericNode <.> {

 public GenericNode <T> insert (T insertMe) {
 return new NodeWithChild <T> (insertMe, this);
 }

 // remove a specific item, return the resulting list
 public Tuple <T, GenericNode <T>> remove (T removeMe) {
 return new Tuple <T, GenericNode <T>> (null, this);
 }

 // print the list so the first item inserted is first
 public void print () {}
}

10

Node With a Child Is Not Too Bad

class NodeWithChild <.> extends GenericNode <.> {

 private final GenericNode <T> child;
 private final T myGuy;

 public GenericNode insert (T insertMe) {
 return new NodeWithChild <T> (insertMe, this);
 }

 public Tuple <T, GenericNode <T>> remove (T removeMe) {
 if (removeMe.compareTo (myGuy) == 0) {
 return new Tuple <T, GenericNode <T>> (myGuy, child);
 } else {
 Tuple <T, GenericNode <T>> res = child.remove (removeMe);
 return new Tuple <.> (res.getFirst (),
 new NodeWithChild <T> (myGuy, res.getSecond ()));
 }
 }

 public NodeWithChild (T data, GenericNode <T> nextOne) {
 myGuy = data;
 child = nextOne;
 }

11

What About Actual List?

class ChrisList <.> implements ListWRemove <.> {

 private final GenericNode <T> listHead;

 public ListWRemove <T> insert (T insertMe) {
 return new ChrisList <T> (listHead.insert ());
 }

 public Tuple <T, ListWRemove> remove (T removeMe) {
 Tuple <T, GenericNode <T>> res = listHead.remove ();
 return new Tuple <T, ChrisList <T>> (res.getFirst (),
 new ChrisList <T> (res.getSecond));
 }

 private public ChrisList (GenericNode <T> useThisHead) {
 listHead = useThisHead;
 }

 public ChrisList () {
 listHead = new EndNode <T> ();
 }
}

12

What Is Different From Before?

• At top level
— All ops over nodes return the head of a new list
— “ChrisList” always constructs a new list with this new head

• Removing an item
— We don’t just cut out the item
— Because just cutting it out would require changing the reference at the cut
— So we effectively cut it out and then build a copy of the list before the cut

13

Using This Immutable List Type

• Let’s insert a bunch of numbers into it:
ChrisList <Integer> foo0 = new ChrisList <Integer> ();
ChrisList <Integer> foo1 = foo0.Insert (1);
ChrisList <Integer> foo2 = foo1.Insert (2);
ChrisList <Integer> foo3 = foo2.Insert (3);

• Can now look at each of the 4 lists...
— The “i”th list will contain the numbers from 1 through i
— Insertion did not change any of the lists

14

Can Take This Idea Even Further

• Say I want to insert 20 numbers into a ChrisList
ChrisList <Integer> foo = new ChrisList <Integer> ();
for (int i = 0; i < 20; i++) {
 foo = foo.insert (i + 1);
}

• A true function head won’t like this... why?

15

Can Take This Idea Even Further

• You are assigning to “foo” and to “i” after initialization
• They’d argue your code should have looked like:
class RecursionShell {

 public ChrisList <Integer> loadUp (int i) {
 if (i == 0) {
 return new ChrisList <Integer> ();
 } else {
 return loadUp (i - 1).insert (i);
 }
 }
}
...
RecursionShell temp = new RecursionShell ();
ChrisList <Integer> foo = new temp.loadUp (20);

16

Some Final Topics Related to FP

• Deep copies and the “clone” method
• Lambdas
• Final throughts re. Java and suitability for FP

17

Deep Copies and Cloning

• We’ve seen that it is possible to write purely “functional” code
— Even some non-trivial containers
— But it required re-designing algorithms and re-writing a lot of code

• Say you want to employ some of these ideas in your programs
— Even if you don’t want to go all the way and be a “function head”

• Does this mean you have to re-write the standard library?

18

Deep Copies and Cloning

• Is there an easier way?
• Might copying substitute?

— In theory, sure. Say you want to call a method that modifies an object
— But you want to be functional
— The easiest way is to make a copy and then modify the copy
— Might be inefficient, but you don’t have to write new code
— And you know you won’t have bugs due to aliasing
— Efficiency is often over-rated
— And this is idiot-proof, right?

19

Wrong!

• Beware... in the general case, there is no easy way to copy in Java
• So if you use copying as a path to FP, be aware...

— You are going to need to write your own copy code

• You might reply: “Hey, doesn’t Object have a clone method?”
— Yes it does
— The convention is that “clone ()” first calls “super.clone ()”
— Then it clones its internal structure
— But it does not clone any objects it has a reference to
— Why?!? I have no idea
— So it can be dangerous to use

20

So Sometimes It Does What You Want

 public void testX() {

 TreeMap <Integer, Integer> foo = new TreeMap <Integer, Integer> ();
 for (int i = 0; i < 10; i++) {
 foo.put (i, i);
 }

 TreeMap <Integer, Integer> bar = (TreeMap <Integer, Integer>) foo.clone ();
 for (int i = 10; i < 20; i++) {
 foo.put (i, i);
 }

 System.out.println (foo);
 System.out.println (bar);
 }

— As you would expect, this will output
{0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7, 8=8, 9=9, 10=10, 11=11, 12=12, 13=13, 14=14,
15=15, 16=16, 17=17, 18=18, 19=19}
{0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7, 8=8, 9=9}

21

But Often It Does Not

 public void testY() {

 ArrayList <ArrayList <Integer>> foo = new ArrayList <ArrayList <Integer>> ();
 for (int i = 0; i < 10; i++) {
 ArrayList <Integer> temp = new ArrayList <Integer> ();
 for (int j = 0; j < 2; j++) {
 temp.add (i);
 }
 foo.add (temp);
 }

 ArrayList <ArrayList <Integer>> bar = (ArrayList <ArrayList <Integer>>) foo.clone ();
 for (int i = 0; i < 10; i++) {
 foo.get (i).add (12);
 }

 System.out.println (foo);
 System.out.println (bar);
 }

— This will output
[[0, 0, 12], [1, 1, 12], [2, 2, 12], [3, 3, 12], [4, 4, 12], [5, 5, 12], [6, 6, 12], [7, 7,
12], [8, 8, 12], [9, 9, 12]]
[[0, 0, 12], [1, 1, 12], [2, 2, 12], [3, 3, 12], [4, 4, 12], [5, 5, 12], [6, 6, 12], [7, 7,
12], [8, 8, 12], [9, 9, 12]]

22

Moral Of The Story

• Use “clone” with care!

23

Java and FP

• So, why has functional programming been relegated to some dead
space towards the end of class?

— Not because functional programming is useless
— Or because it is unloved
— Or because these ideas are unimportant

24

Java and FP

• So, why has functional programming been relegated to some dead
space towards the end of class?

— Not because functional programming is useless
— Or because it is unloved
— Or because these ideas are unimportant

• It’s just that pre-release-8 Java is an un-functional language
— In fact, Java did not even have functions!
— That’s why we have the silly “RecursionShell” class
— The “Java style” does not encourage immutability
— No lambdas in Java pre-release 8. In list of 39 widely-used languages; only 3

don’t have any recognizable form of lambdas (C, Java, Pascal)

25

Java and FP

• Perhaps this will change?
— Lambdas + streams clearly move Java out of the “OO” camp...
— ...and into the “multi-paradigm” camp
— Can now write some pretty clean functional code in Java!

26

Java and FP

• So my final message is:
— FP is a great paradigm to be aware of
— You should always have the functional ideal in mind whenever you write code
— Use it when appropriate

27

Questions?

