COMP 330: Relational Databases 2

Chris Jermaine and Kia Teymourian Rice University

Relational Calculus

Nothing more than a FOL predicate...

Embedded within a set constructor

Example: Bad Beer People LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who goes to a bar serving Pabst Blue Ribbon (PBR)?

Example: Bad Beer People LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who goes to a bar serving Pabst Blue Ribbon (PBR)? $\{f.\text{DRINKER} \mid \text{FREQUENTS}(f) \land \exists (s)(\text{SERVES}(s) \land s.\text{BEER} = "PBR" \land s.\text{DRINKER} = f.\text{DRINKER})\}$ Example: Not Bad Beer People LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)?

Example: Not Bad Beer People LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who has not gone to a bar serving Pabst Blue Ribbon (PBR)? $\{f. \text{DRINKER} \mid \text{FREQUENTS}(f) \land \text{ not } \exists (s)(\text{SERVES}(s) \land s. \text{BEER} = "PBR" \land s. \text{DRINKER} = f. \text{DRINKER})\}$ Example: People Who Like to Drink LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who goes to a bar that serves a beer they like?

Example: People Who Like to Drink LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Who goes to a bar that serves a beer they like?

{f.DRINKER | FREQUENTS(f) $\land \exists (s, l)(SERVES(s) \land LIKES(l) \land s$.BEER = l.BEER $\land s$.BAR = f.BAR)}

Example: Super Cool Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Chris likes?

Example: Super Cool Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Chris likes? $\{s.BAR \mid SERVES(s) \land \forall (l) (if l is from LIKES and corresponds to "Chris", then the bar serves it)\}$ Example: Super Cool Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which bars serve all of the beers that Chris likes?

 $\{s.BAR \mid SERVES(s) \land \forall (l)(LIKES(l) \land l.DRINKER = "Chris")$

 $\rightarrow \exists (s_2)(\text{SERVES}(s_2) \land s_2.\text{BAR} = s.\text{BAR} \land s_2.\text{BEER} = l.\text{BEER})) \}$

Note: we invariably have a " \rightarrow " within a \forall quantifier. Why?

Example: People Who Avoid Bad Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like?

Example: People Who Avoid Bad Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like? $\{f.\text{DRINKER} \mid \text{FREQUENTS}(f) \land \forall (f_2) (\text{if } f_2 \text{ tells us a bar that } f.\text{DRINKER goes to then that bar needs to serve a beer that } f.\text{DRINKER likes})\}$ Example: People Who Avoid Bad Bars LIKES (DRINKER, BEER) FREQUENTS (DRINKER, BAR) SERVES (BAR, BEER)

Query: Which people only go to bars that serve a beer they like? $\{f.\text{DRINKER} \mid \text{FREQUENTS}(f) \land \forall (f_2)(\text{FREQUENTS}(f_2))$ $\land f.\text{DRINKER} = f_2.\text{DRINKER} \rightarrow \exists (s,l)(\text{SERVES}(s) \land \text{LIKES}(l))$ $\land s.\text{BAR} = f_2.\text{BAR} \land l.\text{BEER} = s.\text{BEER}$ $\land l.\text{DRINKER} = f_2.\text{DRINKER}))\}$

• Why do we need both f and f_2 here?

Questions?