
COMP 330: Relational Databases 1

Chris Jermaine and Kia Teymourian
Rice University

1



What is a Database?

A collection of data

Plus, a set of programs for managing that data

COMP 330, Rice University 2



Back in the Day...

The dominant data model was the network or navigational model (60’s
and 70’s)

Data were a set of records with pointers between them

Much DB code was written in COBOL

Big problem was lack of physical data independence

• Code was written for specific storage model
• Want to change storage? Modify your code
• Want to index your data? Modify your code
• Led to very little flexibility

. Your code locked you into a physical database design!

COMP 330, Rice University 3



Some People Realized This Was a Problem

By 1970, EF Codd (IBM) was looking at the so-called relational model

• Landmark 1970 paper, “A relational model of data for large shared
data banks”
• Led to the 1981 Turing Award

. Highest honor a computer scientist receives

. Analogous to a Nobel Prize

Idea: data stored in “relations”

• A relation is a table of tuples or records
• Attributes of a tuple have no sub-structure (are atomic)

No pointers!

COMP 330, Rice University 4



Querying in the Relational Model

Querying is done via a “relational calculus”

Declarative

• You give a mathematical description of the tuples you want
• System figures out how to get those for you

Why good?

• Data independence!
• Your code has no data access specs
• So can change physical org, no code re-writes

COMP 330, Rice University 5



Relation Schema

All data are stored in tables, or relations

A relation schema consists of:

• A relation name (e.g., LIKES)
• A set of (attribute name, attribute type) pairs

. Each pair is referred to as an “attribute”

. Or sometimes as a “column”

• Usually denoted using LIKES (DRINKER string, BEER string)
• Or simply LIKES (DRINKER, BEER)

COMP 330, Rice University 6



A Relation

A relation schema defines a set of sets

• Specifically, if T1, T2, ..., Tn are the n attribute types
• Where each Ti is a set of possible values

. Ex: string is all finite-length character strings

. Ex: integer is all numbers from −231 to 231 − 1

• Then a realization of the schema (aka a “relation”) is a subset of
. T1 × T2 × ...× Tn

. where × is the Cartesian product operator

COMP 330, Rice University 7



A Relation (continued)

So for the relation schema LIKES (DRINKER string, BEER string)

A corresponding relation might be

{(“Chris”, “Taddy Porter”), (“Kia”, “Pabst Blue Ribbon”)}

This is also referred to as a “table”

The entries in the relation are referred to as

• “rows”
• “tuples”
• “records”

COMP 330, Rice University 8



Keys

In the relational model, given R(A1, A2, ..., An)

A set of attributes K = {K1, ...,Km} is a KEY of R if:

• For any valid realization R′ of R...
• For all t1, t2 in R′...
• If t1[K1] = t2[K1] and t1[K2] = t2[K2] and ... t1[Km] = t2[Km]...
• Then it must be the case that t1 = t2

Note: every relation schema MUST have a key... why?

What is a key for LIKES (DRINKER, BEER)?

What is a key for STUDENT (NETID, FNAME, LNAME, AGE, COL-
LEGE)?

COMP 330, Rice University 9



Keys (continued)

A relation schema can have many keys

One is typically designated as the PRIMARY KEY

Denoted with an underline

• STUDENT (NETID, FNAME, LNAME, AGE, COLLEGE)

COMP 330, Rice University 10



Foreign Keys

The relational model does not have pointers

Why? Two reasons:

• Not nice mathematically
. Mathematical elegance key goal in model design

• Implementation difficult
. Move an object? All pointers are invalid!
. Can have centralized look-up table
. But expensive, plus problem still exists

COMP 330, Rice University 11



Foreign Keys (continued)

But we still need some notion of between-tuple references

• LIKES (DRINKER, BEER)
• DRINKER (DRINKER, FNAME, LNAME)
• Clearly, LIKES.DRINKER refers to DRINKER.DRINKER

Accomplished via the idea of a FOREIGN KEY

COMP 330, Rice University 12



Foreign Keys (continued)

• LIKES (DRINKER, BEER)
• DRINKER (DRINKER, FNAME, LNAME)

Given relation schemas R1, R2

• We say a set of attributes K1 from R1 is a foreign key to a set of
attributes K2 from R2 if...
• (1) K2 is a candidate key for R2, and...
• (2) For any valid realizations R′1, R′2 of R1, R2...
• For each t1 ∈ R′1, it MUST be the case that there exists t2 ∈ R′2
s.t...
• t1[K1] = t2[K1] and t1[K2] = t2[K2] and ... t1[Km] = t2[Km]

Intuitively, what does this mean?

COMP 330, Rice University 13



Queries/Computations in the Relational Model

The original query language was the RELATIONAL CALCULUS

• Fully declarative programming language

next was the RELATIONAL ALGEBRA

• Imperative
• Define a set of operations over relations
• A RA program is then a sequence of those operations
• This is the “abstract machine” of RDBs

Today we use SQL

• Heavily influenced by RC
• Has aspects of RA
• Nastier than either of them!

COMP 330, Rice University 14



Overview of Relational Calculus

RC is a variant on first order logic

You say: “Give me all tuples t where P (t) holds”

P (t) is a predicate in first order logic

COMP 330, Rice University 15



Predicates

First order logic allows predicates
. predicate: function that evals to true/false
. “It’s raining on day X” or Raining(X)

. “It’s cloudy on day X” or Cloudy(X)

Can build more complicated preds using logical operations over them
. and
. or
. not
. implies
. iff

COMP 330, Rice University 16



Predicates (continued)

Example: Raining(X)→ Cloudy(X)

Evals to true if either:
. It is not raining on day X, or
. It is raining and cloudy on day X

Example: Raining(X) ∧ Cloudy(X)

Evals to true if:
. It is raining and cloudy on day X

Note the difference between them!
. → is like a logical “if-then”

COMP 330, Rice University 17



First Order Logic

Just predicates and logical ops?
. You’ve got predicate logic

But when you add quantification
. ∀, ∃
. You’ve got first order logic

COMP 330, Rice University 18



Universal Quantification

Asserts that a predicate is true all of the time

Example:
. ∀(X)(Raining(X)→ Cloudy(X))

. This is a zero-arg predicate (takes no params)

. Asserts that it only rains when it is cloudy

. Note: idea of universe of discourse is key!

Example:
. ∀(X)(Friends(X,Y ))

. This is a predicate over Y

. Evals to true if the person Y is friends with everyone

COMP 330, Rice University 19



Existential Quantification

Asserts that a predicate can be satisfied

Example:
. ∃(X)(Raining(X) ∧ not Cloudy(X))

. Asserts that it is possible for it to rain when it is not cloudy

Example:
. not ∃(X,Y )(Friends(X,Y ) ∧ Friends(X,Z) ∧ Friends(Y, Z))

. This is a predicate over Z

. Evals to true if Z isn’t friends with two people who are also friends

COMP 330, Rice University 20



Important Equivalence

∀(X)(P (X)) is equivalent to...

not ∃(X)(not P (X))

. Ex: not ∃(X,Y )(Friends(X,Y ) ∧ Friends(X,Z) ∧ Friends(Y, Z))

is equivalent to

∀(X,Y )(Friends(X,Z) ∧ Friends(Y, Z)→ not Friends(X,Y ))

Why important?

• Often easier to reason about ∃ compared to ∀
• Can be hard to wrap brain around an assertion that something is
true over every item in the entire universe!
• In fact, SQL does not even have ∀

COMP 330, Rice University 21



Questions?

COMP 330, Rice University 22


