
1

JAVA GENERICS

Prof. Chris Jermaine
cmj4@cs.rice.edu

2

Java Is Strongly Typed

• Or is it?
• I can write:
Double myDouble = new Double (12.3);
ArrayList myList = new ArrayList ();
myList.add (myDouble);
Integer myInt = (Integer) myList.get (0);
// compiles OK!

• What does this do?
— Creates an ArrayList, which is a data structure holding type Object
— Puts a Double in (OK since a Double in an object)
— Takes that object out, tries to cast it into an Integer
— Program barfs at runtime... in general, leads to lots o’ bugs!

• This was the official “Java Programming Style” (TM) in 1998

3

Why’d People Code This Way?

• Everyone justifiably avoids copying/pasting code
• Want to write ArrayList (or other class) just once

— And have it work with any type you send in

• Only way to do this way back when...
— Is to hard code in the class the “highest” type that could ever go in
— For a generic container this is “Object”
— That way, you can put anything in
— Then when you take it out, “downcast” to get original object back

• So despite evils of coding this way...
— Was better than the alternative of copying/pasting code

4

Early On, Java Designers Realized Not Good

• Thus, idea of a “generic” type was introduced
• In modern Java, can now say:
Double myDouble = new Double (12.3);
ArrayList <Double> myList = new ArrayList <Double> ();
myList.add (myDouble);
Integer myInt = (Integer) myList.get (0);
// won’t even compile!

• What’s the diff?
— Everything is almost exactly the same
— But now, can tell the compiler that ArrayList holds only objects of type Double
— Done via the “diamond” notation
— As such, the compiler can catch the error in the last line

5

This Might Seem Like a Small Change

• But casting was a real problem in old-school Java
• In our trivial example, clear what is in the container
• But in general case, we have no idea
• People used type “Object” all over the place
• Practiced “cast and pray” programming

— With generics, no need to ever cast again*
— Except to do numeric conversions

*well, except for a few little problems...
 (more next time)

6

Historical Note

• Generics (aka “templates” in other languages)
— Have been around for a long time

• Are a key feature of Ada, for example
• Many people vehemently argue that Java generics are unique

— In particular, Java-heads seem really insecure wrt C++ templates
— Java generics are unique in the sense that every realization of idea has its quirks

• But the goal is always the same, regardless of language
— Allow people to easily re-use code (no copying and pasting) in a type-safe way

7

Let’s Examine (Somewhat) Complex Example

• Fortunately, we can add complexity piece by piece
— So hopefully not overwhelming

• Key thing: my example is NOT restricted to simple containers
— In practice, most use of generics happens with simple containers
— Things like using an “ArrayList <Double>” instead of an array list of “Object”s
— I’ll try to show you that the generic mechanism can be more powerful!

8

Let’s Examine (Somewhat) Complex Example

• Say we want to have a generic set of objects
• And we want to associate with that set...

— A method that computes the sum over all of the objects in the set
— We want this code to be trivially reusable for any type where sum makes sense
— How would you accomplish this?
— Use generics!

9

Our First Generic Interface

interface ISummable <T> {
void addYourselfTo (T addToMe);

}

• OK, so what’s the deal here?
• We have defined an interface called “ISummable”

— We’ve seen plenty of interfaces before!

• The only difference is that this interface is parameterized
— Something can implement “ISummable of type T” only if it has the ability to add

itself to an object of type T
— Where T is some (any) arbitrary type
— Ex: something can implement “ISummable of type Double” only if it has the abil-

ity to add itself to an object of type Double

10

Now Let’s Use ISummable

• Please note I’m gonna skip the abstract class only for clarity
— Don’t want to make generics more puzzling than they already are

class ChrisInt implements ISummable <ChrisInt> {
private Integer myVal;

public ChrisInt (int val) {myVal = val;}

public void addYourselfTo (ChrisInt addToMe) {
addToMe.myVal += myVal;

}
}

• What’s going on here?
— You’re telling the world that ChrisInt can sum itself with ChrisInt objects
— And the compiler will make sure you are telling the truth!
— It’ll check to see you have method “public void addYourselfTo (ChrisInt)”

11

We Can Build This Up Further

• Let’s say we now want our set that can automatically sum itself
• Just have:
class SummableSet <T extends ISummable <T>> {

}

• What is this saying?
— Class “SummableSet” is paramaeterized on a type
— That type is “<T extends ISummable <T>>”
— This will match any type that is declared using

 class SomeTypeHere extends ISummable <SomeTypeHere> {}
— And for this declaration to hold, the class must provide a method of the form

 public void addYourselfTo (SomeTypeHere foo) {}

12

Implementing SummableSet

class SummableSet <T extends ISummable <T>> {
ArrayList <T> myData = new ArrayList <T> ();

void addItem (T addMe) {
myData.add (addMe);

}

T getSum () {
T sum = null;
for (T curItem : myData) {

if (sum != null)
curItem.addYourselfTo (sum);

else
sum = curItem;

}
return sum;

}
}

13

Using SummableSet

• Easy!
SummableSet <ChrisInt> foo = new SummableSet <ChrisInt> ();
...
ChrisInt result = foo.getSum ();

• So what do we get from this?
— We can now use “SummableSet” over any type that can be added to itself
— And the compiler checks everything, so there’s no possibility of type errors
— In the “old-school” Java way of doing things, there would have been several casts
— Using generics, there is little room for error!

14

Using SummableSet

• Can easily create a SummableSet of polynomials...
— First define the “Polynomial” class

class Polynomial implements ISummable <Polynomial> {

 private ArrayList <Double> coefs = new ArrayList<Double> ();
 ...

 public void addYourselfTo (Polynomial addToMe) {
 int i = 0;

// this nasty code adds my coefs to his
 for (; i < coefs.size () && i < addToMe.coefs.size (); i++) {
 addToMe.coefs.set (i, addToMe.coefs.get (i) + coefs.get (i));
 }

// and then inserts any additional coefs to the other one
 for (; i < coefs.size (); i++) {
 addToMe.coefs.add (coefs.get (i));
 }
 }
}

15

Using SummableSet

• Can easily create a SummableSet of polynomials...
— First define the “Polynomial” class

class Polynomial implements ISummable <Polynomial> {

• And then we’re good to go!
SummableSet <Polynomial> foo =

new SummableSet <Polynomial> ();

16

A Few Thoughts

• As intimated before...
— Much use of generics is for simple containers
— So you get class definitions like:

 class Stack <T> { }

— This is fine and useful

• But you are using the generic mechanism at its full power when
— The type argument implements some interface
— Because then you can implement algorithms in a generic way
— You abstract out the ops you need from the data being operated on by the alg
— Put them in an interface
— Don’t worry about anything else

• This is exactly what we did with “SummableSet”

17

How Does This Differ From “Classic” Inher.?

• Consider what our example looks like w/o generics:
class SummableSet {

ArrayList <ISummable> myData =
new ArrayList <ISummable> ();

void addItem (ISummable addMe) {
myData.add (addMe);

}
...
}

• What are the key diffs?

18

How Does This Differ From “Classic” Inher.?

• Consider what our example looks like w/o generics:
class SummableSet {

ArrayList <ISummable> myData =
new ArrayList <ISummable> ();

void addItem (ISummable addMe) {
myData.add (addMe);

}
...
}

• What are the key diffs?
— Someone is free to put anything implementing ISummable into SummableSet
— Can mix all sorts of different types in there
— How to deal with “addYourselfTo” to make sure we don’t add mismatched types?
— Well, in each implementation, would need to cast to verify correctness...

19

How Does This Differ From “Classic” Inher.?

class ChrisInt implements ISummable {
private Integer myVal;

public ChrisInt (int val) {myVal = val;}

public void addYourselfTo (ISummable addToMe) {
ChrisInt temp = (ChrisInt) addToMe;
temp.myVal += myVal;

}
}

• Note the cast: could fail at runtime! Really bad!
• With generics, compiler prevents any of these errors

20

Questions?

