Learning To Grade Student Programs in a Massive Open Online Course

Anna Drummond
Yanxin Lu
Swarat Chaudhuri
Chris Jermaine
Joe Warren
Scott Rixner
Rice University
So, What’s a MOOC?

• A MOOC is an online course open to everyone who signs up
• Students typically watch videos (instructional content)
• They interact with peers/TAs/instructors in online forums
• Take online exams/quizzes
• Turn in assignments for grading
• Then they might get some sort of certificate in the end!
So, What’s a MOOC?

• A MOOC can be very large (in terms of number of participants)

• Example: IPP (run by last two authors of this paper)
 — 350,000 students have signed up
 — 30,000 have actually completed the course
 — Spread over three (offerings) so far
 — Each offering lasts two months
So, What’s a MOOC?

• A MOOC can be very large (in terms of number of participants)

• Example: IPP (run by last two authors of this paper)
 — 350,000 students have signed up
 — 30,000 have actually completed the course
 — Spread over three (offerings) so far
 — Each offering lasts two months

• Managing that many students requires smart automation
 — Many opportunities for research in applied machine learning/data mining!
This Paper: Focus on Grading

• IPP covers basic interactive game programming
• Ex. programming assignment: Asteroids (classic arcade game)
This Paper: Focus on Grading

• IPP covers basic interactive game programming
• Ex. programming assignment: Asteroids (classic arcade game)
• Grading rubric contains items such as:
 — 1 pt: The program spawns multiple rocks
 — 1 pt: The number of lives decreases by one when the ship collides with a rock
 — 1 pt: The program correctly determines whether a missile and a rock collide
 — 1 pt: The score is updated appropriately after missile/rock collisions
This Paper: Focus on Grading

• IPP covers basic interactive game programming
• Ex. programming assignment: Asteroids (classic arcade game)
• Grading rubric contains items such as:
 — 1 pt: The program spawns multiple rocks
 — 1 pt: The number of lives decreases by one when the ship collides with a rock
 — 1 pt: The program correctly determines whether a missile and a rock collide
 — 1 pt: The score is updated appropriately after missile/rock collisions
• Note: no easy way to grade these automatically
 — They really require playing the game
• And instructors/TAs can’t grade 10,000 submissions
• Hence, a class such as IPP is forced to rely on peer grading
Peer Grading

• Just like it sounds: Each program is graded by ~5 other students
• Great, idea, right?
Peer Grading

• Just like it sounds: Each program is graded by ~5 other students
• Great, idea, right?
• Well it is, but there’s a huge variance in peer grading quality
 — Some students grade carefully, writing hundreds of lines of comments
 — Some do a terrible job, just giving full scores to every assignment
Peer Grading

• Just like it sounds: Each program is graded by ~5 other students
• Great, idea, right?
• Well it is, but there’s a huge variance in peer grading quality
 — Some students grade carefully, writing hundreds of lines of comments
 — Some do a terrible job, just giving full scores to every assignment
• What we’d like to do:
 — Predict quality of graders (possible to do early in the class; are reasonable signals)
 — Predict quality of programs
 — Get a post. dist. over true score and predicted, grader-assigned score
 — Assign graders to programs so that we minimize

\[
E \left[\sum_{\text{submitted programs}} \left(\text{true score} - \text{assigned score} \right)^2 \right]
\]
How to Predict Program Quality?

• This is the problem at the heart of the paper
• Basic idea... break the student program into a set of fragments
• Define a set of distance metrics over fragments
 — Compare code fragment types... in IPP, this is the type of event handler (keydown, keyup, etc.)
 — Jaccard distance between bags of system calls
 — Jaccard distance between bags of guarded updates
 — Tree edit distance between abstract syntax trees
 — Graph edit distance between dependence graphs over library functions
 — Graph edit distance between dependence graphs over functions + variables
• Then use those distance measures to do some sort of regression
Two Ways We Tried to Do Regression

• First way: kNN regression
 — Turn each distance into a similarity
 — Similarity between programs is cost of max matching between sets of fragments
 — The do kNN regression using $1/similarity$ as the distance measure
 — Are two flavors of this in the paper
Two Ways We Tried to Do Regression

• First way: kNN regression

• Second way relies on choosing a number of prototype fragments

• Then we can define the “closeness” between prototype p_k and the jth fragment in a program i as:

$$w_{ijk} = \frac{\exp\left({\text{dist}}(x_{ij}, p_k)\right)}{\sum_{k'} \exp\left({\text{dist}}(x_{ij}, p_{k'})\right)}$$

• Assume score for program i is generated as

$$y_i \sim \text{Normal}\left(n_i^{-1} \sum_{jk} w_{ijk}s_k, \sigma^2\right)$$

• Learn the identity of the prototypes, as well as the weights using Bayesian methods
How Well Can We Do?

Blackjack

AUC

Asteroids

AUC

Score Cutoff
Questions?