SENDERS, RECEIVERS, AND AUTHORS IN DOCUMENT CLASSIFICATION

Anna Drummond Chris Jermaine Rice University

Document Classification: a Classical Problem

- But what do you do when you have people associated?
 - Author(s)
 - Sender
 - Receiver(s)
 - Those carbon copied on email

Document Classification: a Classical Problem

- But what do you do when you have people associated?
 - Author(s)
 - Sender
 - Receiver(s)
 - Those carbon copied on email
- In our problem domain, such people are key information
 - Electronic discovery in courtroom litigation
 - 70% of e-discovery is searching through emails
 - Must find those relevant to some aspect of the case
 - Too expensive to do first pass by hand means multi-label classification
 - Clearly, sender/receiver information is important!

What's the Obvious Way to Handle People?

- Just use the traditional bag-of-words...
 - and append people on at the end
 - then use a standard classifier
- Example: we have [Joe, Jen, John, Sue] in our database
 - And bag-of-words encoding of a particular email is [0, 2, 4, 1, 0]
 - Joe sent an email to Jen and Sue

What's the Obvious Way to Handle People?

- Just use the traditional bag-of-words...
 - and append people on at the end
 - and use a standard classifier
- Example: we have [Joe, Jen, John, Sue] in our database
 - And bag-of-words encoding of a particular email is [0, 2, 4, 1, 0]
 - Joe sent the email to Jen and Sue
 - So we encode the email as [0, 2, 4, 1, 0] with [1, 0, 0, 0] and [0, 1, 0, 1] appended
 - Or, [0, 2, 4, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1]

Unfortunately, Not Particularly Useful

- 4,659 emails from a construction litigation
- Nine, non-exclusive possible labels
- Learned a model using a SVM... Here is the AUC:

	No people	With People	
Label 1	.9147	.9092	
Label 2	.9501	.9514	
Label 3	.8824	.8850	
Label 4	.7749	.7754	
Label 5	.7971	.8015	
Label 6	.7335	.7363	
Label 7	.9211	.9193	
Label 8	.7396	.7404	
Label 9 .7241		.7314	

avg: 0.8264 with 0.8278 w/o

What's the Problem?

- SVM actually does well on emails with few people
- But very badly on emails with many people
 - SVM does not understand "receivers" or "senders" is really a single, set-valued att
- Weight of "receivers" vis-a-vis words-in-doc should not vary (much) with size
 - Ex: I often send emails to Joe, Jen, John, and Sue about data mining...
 - Is the recipient set {Joe, Jen, John, Sue} more indicative of DM than {Joe, Jen}?
 - Probably not!

What's the Problem?

- SVM actually does well on emails with few people
- But very badly on emails with many people
 - SVM does not understand "receivers" or "senders" is really a single, set-valued att
- Weight of "receivers" vis-a-vis words-in-doc should not vary (much) with size
 - Ex: I often send emails to Joe, Jen, John, and Sue about data mining...
 - Is the recipient set {Joe, Jen, John, Sue} more indicative of DM than {Joe, Jen}?
 - Probably not!
- Can't we just normalize?
 - [0, 2, 4, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1] becomes [0, 2, 4, 1, 0, 1, 0, 0, 0, 0, 0.5, 0, 0.5]
 - Yes, but this normalization does not understand the relative importance of people

Our Solution

- Map each person to a point in a low-dimensional latent space
- For a given cat. (sender, receiver, etc.) each person is weighted
 - Very important to a category relative to others? You have a high weight

Our Solution

- Map each person to a point in a low-dimensional latent space
- For a given cat. (sender, receiver, etc.) each person is weighted
 - Very important to a category relative to others? You have a high weight
- That category is then represented as a low-dim, weighted sum:

$$\overrightarrow{\alpha_{D_c}} = \sum_{p \in D_c} \frac{\overrightarrow{\kappa_p} \times \overrightarrow{w_{p,c}}}{\overrightarrow{w_{p,c}}}$$

- Here, D_c is the set of people associated with category c in document D
- w is the weight vector, and kappa is the latent position
- \bullet Then, append $\overrightarrow{\alpha_{D_c}}$ to the bag-of-words vector

Pictorially

In Our Paper...

- We suggest multiple ways in which this method can be used
- And evaluate the embedding-based-method extensively
- Ex. On the construction litigation problem, we have:

	No people	With People	Embedding
Label 1	.9147	.9092	.9159
Label 2	.9501	.9514	.9585
Label 3	.8824	.8850	.8842
Label 4	.7749	.7754	.7957
Label 5	.7971	.8015	.8408
Label 6	.7335	.7363	.8063
Label 7	.9211	.9193	.9419
Label 8	.7396	.7404	.8615
Label 9	.7241	.7314	.8155

Avg: 0.8264 vs. 0.8278 vs. 0.8689

Questions?