
1

JAVA GENERICS (#3)

Prof. Chris Jermaine
cmj4@cs.rice.edu

2

Let’s Look At Another Generics Example

• One of most classic CS algorithms is “Dijkstra’s algorithm”
• Used to solve single-source shortest path problem

— Say I have a bunch of objects (“vertices” or “nodes” in graph-speak)
— And pair-wise distances for each
— Goal is to find shortest path from source object to all others
— Runs in O(|E| + |V|log|V|) time with careful implementation
— |E| is number of pairwise distances, |V| number of objects

• I’ll now give an outline of algorithm on the board
— Like all/most shortest path algorithms, relies on idea of “relaxation”
— Stores all objects in priority Q, sorted based on smallest known distance

3

Our Goal

• Implement Dijkstra’s in a very generic way
• So it operates over a set of objects of any type
• And it can work with any distance measure

— Time, miles, weight, plain ints, etc.

4

We’ll First Define the INumeric Generic

• Encapsulates the idea of a generic “distance”
interface INumeric <N> {
 N addTo (N toMe);
 boolean greaterThan (N me);
}

• What’s the idea here?
— INumerics must be addable to themselves
— And comparable with themselves

5

Next is the IDstanceComputer

interface IDistanceComputer <T, N extends INumeric <N>> {
 N computeDistance (T fromMe, T toMe);
 N getHugeOne ();
 N getTinyOne ();
}

• This class is sort of a “factory” for INumerics
• It knows how to create tiny ones, and huge ones
• And it knows how to look at two T objects

— And compute the distance between them, returning it as an INumeric

• Question: why is IDistanceComputer separated out from T?

6

Now We Can Implement Dijkstra’s

class Dijkstra <T, N extends INumeric <N>> {

 // lists all of the nodes we are computing over
 ArrayList <T> everyone;
 // used to compute distances
 IDistanceComputer <T, N> distanceFunc;
 // used to store the best distance for each object
 HashMap <T, N> distanceFromOrig = new HashMap <T, N> ();
 // the central priority queue used by the alg
 PriorityQueue <T> myQ =
 new PriorityQueue <T> (10, new ComparisonClass ());

7

Now We Can Implement Dijkstra’s

class Dijkstra <T, N extends INumeric <N>> {

 ...
 // this is a “private inner class’’
 // needed so we can get the priority queue to work
 private class ComparisonClass implements Comparator <T> {
 public int compare (T me, T withMe) {
 N distOne = distanceFromOrig.get (me);
 N distTwo = distanceFromOrig.get (withMe);
 if (distOne.greaterThan (distTwo))
 return 1;
 else if (distTwo.greaterThan (distOne))
 return -1;
 else
 return 0;
 }
 }

8

Now We Can Implement Dijkstra’s

class Dijkstra <T, N extends INumeric <N>> {
 ...
 public N getDistanceFromOrigin (T forMe) {
 return distanceFromOrig.get (forMe);
 }

 public Dijkstra (IDistanceComputer <T, N> myComputer,
 ArrayList <T> myData) {
 distanceFunc = myComputer; boolean firstOne = true;
 for (T curNode : myData) {
 if (firstOne) {
 distanceFromOrig.put (curNode, distanceFunc.getTinyOne ());
 firstOne = false;
 } else {
 distanceFromOrig.put (curNode, distanceFunc.getHugeOne ());
 }
 myQ.add (curNode);
 }
 everyone = myData;
 runTheAlgorithm ();
 }

9

 private void runTheAlgorithm () {
 // pull an item off the top of the priority queue
 for (T lowNode=myQ.poll(); lowNode!=null; lowNode=myQ.poll ()) {

 // look through everyone
 for (T curNode : everyone) {
 // get the current item's current distance
 N distance = distanceFromOrig.get (curNode);

 // get his relaxed distance
 N relaxedDistance = distanceFunc.computeDistance (lowNode,
 curNode).addTo (distanceFromOrig.get (lowNode));

 // if it better, then use it
 if (distance.greaterThan (relaxedDistance)) {
 myQ.remove (curNode);
 distanceFromOrig.put (curNode, relaxedDistance);
 myQ.add (curNode);
 }
 }
 }
 }

10

To Use This? Easy

class IntDistance implements INumeric <IntDistance> {
 int val;
 ...
}

class IntDistanceComputer implements
 IDistanceComputer <Integer, IntDistance> {
 // gives an inf. distance to anything >= 10
}

// put 45, 34, 12, 25, 39, 56 into ArrayList <Integer> myData
Dijkstra <Integer, IntDistance> myAlgorithm = new Dijkstra
 <Integer, IntDistance> (new IntDistanceComputer (),
 myData);

— Result is (45, 0), (34, 11), (12, big), (25, 20), (39, 6), (56, big)

11

Questions?

