
1

CONSTRUCTORS/DESTRUCTORS IN JAVA

Prof. Chris Jermaine
cmj4@cs.rice.edu

2

Constructors/Destructors in Java

• All about allocating resources before an object is used
• And freeing resources when an object is done
• Will cover constructors first

— Which are done right in Java and make a lot of sense

• And then cover destructors
— Which are not and don’t

3

Constructors

• We’ve seen ‘em
— Code that gets automatically called when memory for an object is allocated

• But we’ll discuss in a bit more detail

4

Default Values

• At object allocation
— Java assigns each member var its default value

• If you want, you can give an explicit initialization
class Foo {

private int a = 12;
private IDoubleVector b = new DenseDoubVector (2, 0);
private double c;
...

}

• Initialized in order of declaration
— And initialized before any constructor code is executed
— Note: statics only initialized once, at first creation of object of that type

5

Providing Initialization Code

• Can have a block of code that is always run before constructor
class Foo {

int a;
{

System.out.println (“This code’ll run before the”);
System.out.println (“constructor.”);

}
Foo () {

System.out.println (“Here is the constructor.”);
}

}
...
Foo bar = new Foo ();

• What does this do?
• Note: can have block labeled “static”... what happens then?

6

Calling Superclass Constructors

• The default (no-param) superclass const. is automatically called
— Invoked before anything else is done to the subclass
— This can cause a chain of invocations, all the way back to “Object”
— If you want another constructor, use call to “super”
— Must be the first statement in a named constructor

class Foo extends Bar {
{

System.out.println (“Hi mom!”);
}
Foo () {

super (2);
System.out.println (“Here is the constructor.”);

}
} ...
Foo bar = new Foo ();

— What does this do?

7

I Think Java Does This Just About Right

• Except that there’s no really easy way to force a subclass...
— To call a particular, parameterized constructor

• Ex:
class AChecker {

private int xPos;
private int yPos;
protected AChecker (int initX, int initY) {}

}

class BlackChecker extends AChecker {
public BlackChecker () {

System.out.println (“I screwed, up, why?”);
}

}
— What’s the best thing you can do here to prevent problems?

8

Destructors

• A “destructor” is a piece of code called when an object dies
• One weird thing about Java

— It lacks destructor support in the language
— Does have “finalize()” inherited from “Object”, but that’s something else
— I couldn’t believe this when I first learned Java...

• Why did the Java leave out destructors?

9

Destructors

• A “destructor” is a piece of code called when an object dies
• One weird thing about Java

— It lacks destructor support in the language
— Does have “finalize()” inherited from “Object”, but that’s something else
— I couldn’t believe this when I first learned Java...

• Why did the Java leave out destructors?
— Presumably, they thought, “Java’s garbage collected”...
— Destructors are for writing code that frees memory when an object is dead
— So we don’t need them!

• What’s wrong with this argument?

10

Destructors

• A “destructor” is a piece of code called when an object dies
• One weird thing about Java

— It lacks destructor support in the language
— Does have “finalize()” inherited from “Object”, but that’s something else
— I couldn’t believe this when I first learned Java...

• Why did the Java leave out destructors?
— Presumably, they thought, “Java’s garbage collected”...
— Destructors are for writing code that frees memory when an object is dead
— So we don’t need them! Not true!

• What’s wrong with this argument?
— Local memory is not the only resource! What are some others?

Resources

11

Destructors

• A “destructor” is a piece of code called when an object dies
• One weird thing about Java

— It lacks
— Does have “finalize()” inherited from “Object”, but that’s something else
— I couldn’t believe this when Scott first told me...

• Why did the Java leave out destructors?
— Presumably, they thought, “Java’s garbage collected”...
— Destructors are for writing code that frees memory when an object is dead
— So we don’t need them! Not true!

• What’s wrong with this argument?
— Local memory is not the only resource! What are some others?
— Secondary storage, server connection, network connection, device driver memory

Resources

12

So What Does a Good Programmer Do?

• Lack of a destructor is an attack on encapsulation!
• Why? You suddenly have to worry...

— Does this class have to deal with freeing some resource?
— When that resource might be unimportant to the class’ interface!
— If so, make sure to call “freeResource” routine
— Example of commonly suggested workaround:

NetworkConnection temp;
try {
 // code that deals with temp here
} finally {
 temp.freeResource ();
}

— Java 7 even has a “try-with-resources” shortcut for this

13

But Even This Is Not Very Good

NetworkConnection temp = new NetworkConnection ();
try {
 // code that deals with temp here
} finally {
 temp.freeResource ();
}

• What’s the problem?

14

But Even This Is Not Very Good

NetworkConnection temp = new NetworkConnection ();
try {
 // code that deals with temp here
} finally {
 temp.freeResource ();
}

• What’s the problem?
— What if inside the “try” code you create a reference to “temp”?
— No easy way to deal with this, except to be careful, and never alias a resource
— OR could eschew aliases entirely (but that’s not the “Java way of programming”)

• It’s easy for me to stand here and be snarky
— And complain about Java (why not just admit failure, add a real destructor?)
— But this is a very serious issue
— Only way around it is being as careful as possible with resources!

15

Final Note

• What’s up with “Object.finalize ()”?
— Called by garbage collector “if and when” JVM determines no more references

• After call to “finalize”, JVM can discard the object
• But no guarantees. This code never prints “done” on my machine:
class Bar {
 Bar () {
 System.out.println (“new Bar!”);}
 protected void finalize () {
 System.out.println (“done”);}
}
...
public static main (String [] args) {
 System.out.println (“Inside main.”);
 Bar x = new Bar ();
}

16

