ML Bootcamp Day 1, AM: Intro to ML

Chris Jermaine Rice University

Plan For The Next Two Days

- This morning: Intro to ML
 - \triangleright What is ML?
 - ▶ History
 - \triangleright ML success and failure
 - ▶ Types of learning
 - \triangleright Loss and fitting
 - ▶ Features and parameters

• This afternoon: Basic Methods

- \triangleright Regression
- \triangleright SVMs and kernels
- \triangleright Decision trees
- ▶ Regularization
- \triangleright Clustering and dimensionality reduction

Plan For The Next Two Days

- Tomorrow morning: Deep learning
 - ▶ Multi-layer perceptrons
 - \triangleright VAEs
 - ▶ Backprop
 - ▷ SGD
 - $\triangleright~{\rm CNNs}~{\rm and}~{\rm RNNs}$
- Tomorrow afternoon: Advanced deep learning and RL
 - ▷ VAEs
 - \triangleright Generative adversarial networks
 - \triangleright Deep RL
 - \triangleright TensorFlow and PyTorch

Day 1 AM, Chapter 1: A History of ML

First, What is ML?

• A subset of "AI" (Artificial Intelligence)

 \triangleright A more precise definition in a minute!

- AI is the task of programming an "intelligent agent"
 - \triangleright Able to solve novel problems
 - \triangleright Has emergent behavior
 - \triangleright Can do things not specifically programmed to do

AI: Early-Early Years

- AI goes back a long time, to Leibniz, Hobbes, Descartes
- Leibniz "Calculus ratiocinator"
 - \triangleright 17th century
 - \triangleright Precursor to mathematical logic
 - \triangleright Imagines an inference engine able to reason

AI: Early-Early Years

- Artificial Neural Networks
 - \triangleright First computational model proposed in 1943
 - \triangleright Inspired by the brain
 - ▷ Warren McCulloch and Walter Pitts: ANs can perform logic
 - \triangleright Contemporary with ENIAC (UPenn, 1946)
 - ▷ Minsky built SNARC (Stochastic Neural Analog Reinforcement Calculator) in 1951
 - \triangleright Early ANNs: compute model, not AI

AI: Early Years

- AI: term invented by John McCarthy in 1956
 - \triangleright John McCarthy: Stanford computer scientist who invented Lisp
 - \triangleright Turing award winner in 1971
 - ▷ "Dartmouth Summer Research Project on Artificial Intelligence"
 - ▷ Summer-long brainstorming session

AI: Early Years

- Early successes came quickly
 - \triangleright AI as search: goals, subgoals, backtracking
 - $\triangleright~$ Newell and Simon "General Problem Solver"
 - ▷ Arthur Lee Samuel: Samuel Checkers-playing Program (at IBM, around 1960)
 - $\triangleright\,$ Eliza: 1964-1966 MIT AI Lab

AI: Early Years

Welc	ome to								
		EEEEE	LL	IIII	ZZZZZZZ	ААААА			
		EE	LL	II	ZZ	AA	AA		
			LL	II	ZZZ	АААААА			
		EE	LL	II	ZZ	AA	AA		
		EEEEE	LLLLLL	IIII	ZZZZZZ	AA	AA		
Eliza is a mock Rogerian psychotherapist.									
The original program was described by Joseph Weizenbaum in 1966.									
This implementation by Norbert Landsteiner 2005.									
ELIZA: Is something troubling you ?									
YOU: Men are all alike.									
ELIZA:	ZA: What is the connection, do you suppose ?								
YOU: They're always bugging us about something or other.									
ELIZA: Can you think of a specific example ?									
YOU:	: Well, my boyfriend made me come here.								
ELIZA:	: Is it important to you that your boyfriend made you come here ?								
YOU:	He says I'm depressed much of the time.								
ELIZA:	I am sorry to hear that you are depressed.								
YOU:	It's true. I am unhappy.								
ELIZA:	Can you explain what made you unhappy ?								
YOU:									

The Turing Test

- Eliza: first serious attempt to pass the "Turing Test"
 - ▷ Based on Alan Turing's 1950 paper "Computing Machinery and Intelligence"
 - \triangleright Turing Test: three "players"
 - \triangleright (1) Interrogator, (2) Computer, (3) Human
 - \triangleright Interrogator passes written questions to both
 - \triangleright Tries to determine which one is human
- Eliza was astonishing to people in the 1960's
 - \triangleright Not close to passing the Turing Test!

Rice University: Intro to ML

The Hype

• Herbert Simon in 1965:

 \triangleright "Machines will be capable, within twenty years, of doing any work a man can do."

• Marvin Minsky in 1967:

▷ "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."

- Marvin Minsky in 1970:
 - ▷ "In from three to eight years we will have a machine with the general intelligence of an average human being."

But All Was Not Well

Winter Is Coming

Some ominous signs...

• Automatic Language Processing Advisory Committee, 1964-66

- ▷ Seven scientists, established by US government
- \triangleright Looked to study the state of computational linguistics
- ▷ Critical of machine translation work to date
- Minsky and Papert: 1969 book "Perceptrons"
 - \triangleright Showed some limitations of common neural networks
 - \triangleright Seemed to kill off neural networks research for a long time

• "Artificial Intelligence: A General Survey" by James Lighthill, 1973

▷ "Formed the basis for the decision by the British government to end support for AI research in all but two universities"

Winter Is Here

- Speech Understanding Research program (DARPA) at CMU, other locations
 - \triangleright Harpy: recognized more than 1000 words
 - \triangleright But had severe limitations
 - $\triangleright~$ Led to massive cutback in DARPA AI funding by 1974
- 1990–Death of the Fifth-Generation project
 - \triangleright In the 80's, Japanese invested \$400 million (1990 dollars)
 - \triangleright Not much to show for it

Rice University: Intro to ML

The Rise of ML

• AI traditionally relied on smart programmers

- \triangleright A program may be able to "reason"
- \triangleright Could search for a better solution (ex: minimax)
- \triangleright Could chain together rules

$$A \to B, B \to C \implies A \to C$$

 \triangleright But didn't really learn

- That ended with the advent of ML
 - \triangleright AI: an intelligent agent; has emergent behavior
 - \triangleright ML: an AI that learns from retrospective data or experience
 - \triangleright ML is often statistical in nature

• 1986: Backpropagation

- \triangleright Rumelhart, Hinton, Williams
- \triangleright Use BP to train a NN with hidden layer(s) via gradient descent
- ▷ Forerunner of all modern "deep learning"

• 1989: Reinforcement Learning (Q-learning)

- ▶ Developed by Watkins
- \triangleright Paradigm where ML learns via experience
- \triangleright Not pre-collected data

• 1993: Association rule mining

- ▷ 1993 paper of Agrawal et al., IBM
- \triangleright Example: {bread, butter} \implies {milk}
- \triangleright Kicked off field of "data mining"

- 1995: Random Forests
 - \triangleright Ensemble decision tree method
 - \triangleright Still among the most accurate classifiers

- 1995: Invention of Support Vector Machines
 - ▶ Cortes and Vapnik
 - \triangleright "Max margin" method
 - \triangleright Works well for large number features, little data

Rice University: Intro to ML

• 1997: Invention of LSTM

- \triangleright Type of neural network
- $\triangleright~$ Can "remember" state over sequential data
- \triangleright Avoids "vanishing gradients" problem

• 2006: Netflix Prize

- ▷ Spurred research on recommender systems
- \triangleright Netflix provided 100M movie ratings
- Took form of <user, movie, date of grade, grade>
- Learn to predict grade on new data
- \triangleright Beat Netflix algorithm by 10%? Win \$1M!
- \triangleright Prize collected in 2009

Rice University: Intro to ML

- 2009: ImageNet
 - ▷ Fei-Fei Li from Stanford University
 - \triangleright Data set that spurred vision research
 - \triangleright 14 million images, 20,000+ categories
 - \triangleright Best deep NNs are now better than people!

- 2013: Word2Vec
 - ▷ Tomas Mikolov led a Google team
 - \triangleright Reads huge amount of text, learns word embedding
 - \triangleright Makes it easy to use other ML methods on text data

Where Are We Today?

- There have been some amazing recent developments
- Lots of recent buzz: GPT-3
 - \triangleright 125-billion parameter language model
 - ▷ Developed by OpenAI
 - \triangleright GPT = "Generative Pre-trained Transformer"
 - \triangleright Transformers are new class of big NN
 - \triangleright Learned on most of English available electronically
 - \triangleright 6 million Wikipedia docs: is less than 1% of training data!
- Reported results are amazing
 - \triangleright Compare with Eliza!

GPT-3 Example

Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking in recent decades. The new split will be the second in the church's history. The first occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split "comes at a critical time for the church, which has been losing members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has divided the church. In 2016, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

Not Just Image Classification: Image Generation

- GANS: Generative Adversarial Networks
 - \triangleright Ian Goodfellow and his colleagues in 2014
 - \triangleright Two neural networks learn together:
 - \triangleright One to generate data
 - \triangleright One to recognize real from fake data
 - \triangleright Generator gets so good it can fool humans
 - \triangleright (This leads to "deep fakes", unfortunately)

Example: GANS

Game Playing

Few Games Remain Where Humans Can Beat Machines

• Most modern ML game playing relies on reinforcement learning

- $\triangleright~$ ML learns to solve a "Markov Decision Process"
- \triangleright A game where the ML learns to traverse a graph
- \triangleright Actions lead to stochastic rewards/transitions
- \triangleright "Deep RL" allows a deep NN to learn to maximize reward

• RL-based ML algorithms have done amazing things

- ▷ AlphaGo: Go-playing ML algorithm
- ▷ March 2016: beat Lee Sodol (9-dan pro)
- $\triangleright~$ 2017: beat Ke Kie, world number 1
- ▷ AlphaZero: trained only via self-play (no data)
- ▶ Beat AlphaGo 100-0

Image Classification

• Not just useful for toy database (ImageNet)

 \triangleright ML algorithms can out-perform human experts at important tasks

Reading Low-Dose CT Scans

- "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography"
 - \triangleright Trained deep learning model on 42,290 CTs from 14,851 patients
 - \triangleright 578 developed biopsy-confirmed cancer in one year
 - \triangleright Tested on 6,716 cases (86 cancer positives)
 - \triangleright Deep learning model: ROC 94.4%
 - \triangleright Six radiologists: all performed worse

What Is ML Bad At? Causation

• Key weakness: ML algorithms do correlation not causation

- \triangleright Is grass necessary to identify the presence of a lion?
- \triangleright Even a child would discount the grass...
- ▶ But ML algorithm may classify a lawn as a lion!
- One way to avoid this: learn in the "real-world" (ex: RL)
 - \triangleright But it can be tough to facilitate this

What Is ML Bad At? Fairness

- ML algorithms are only as good as their data
 - \triangleright We want to use ML to help with hiring decisions
 - \triangleright Our company has always done a good job promoting men
 - \triangleright Most examples of high performers are men
 - \triangleright Gender is specifically excluded as a criteria
 - \triangleright ML algorithm can spot proxies for gender
 - \triangleright May still be biased towards hiring men

Day 1 AM, Chapter 2: Supervised Learning

ML: How Does It Work?

Foundation of modern ML: supervised learning

- One of the most fundamental problems in data science
 - \triangleright Given a bunch of (x, y) pairs
 - \triangleright Goal: learn how to predict value of y from x
 - \triangleright Classically, x is a feature vector
 - \triangleright Example: x is (age, income, gender)
 - ▷ Called "supervised" because have examples of correct labeling

Supervised Learning Examples

Any task where we want to mimic existing labeling:

- \triangleright Given an image, tell if has a cat or not
- $\triangleright~$ Given a text EMR, label "breast cancer" or not
- \triangleright Given a document (email) in a court case, figure which subjects relevant to
- $\triangleright~$ Given information about a patient surgery, predict death
- $\triangleright~$ Given head trauma patient info, predict ICP crisis
- $\triangleright\,$ Given an set of surgical vital signs, label "good surgery" or not
- \triangleright Many others!
Two Most Common Types of SL

- Classification and regression
- Classification:
 - \triangleright Outcome to predict is in $\{+1, -1\}$ ("yes" or "no")
 - \triangleright Ex: Given a text EMR, label "breast cancer" or not
- Regression:
 - \triangleright Outcome to predict is a real number
 - \triangleright Ex: Given an ad, predict number of clickthrus per hour

Workhorse of Modern SL

- Linear regression
 - \triangleright From x, predict y as:

$$f(x|r) = \sum_{j} x_{j} r_{j}$$

- $\triangleright \langle r_1, r_2, ..., r_m \rangle$ are called regression coefficients
- \triangleright Note: this gives a real-valued output
- This is just one way to do SL
- You'll see many others:
 - \triangleright kNN, support vector machines, random forests, etc.

Extending LR to Classification

- Output of linear regression input into a logistic function
 - \triangleright From x, predict y as:

$$f(x|r) = (1 + e^{-\sum_{j} x_{j}r_{j}})^{-1}$$

▶ Maps feature vector to a probability of true

Most Modern SL is Optimization-Based

- Deep learning in particular follows this paradigm...
- The model f(x|Θ) we are trying to "learn" has a parameter set Θ
 ▷ Θ is list of regression coefs r₁, r₂, r₃, etc. in LR
- Given a data set, we definite a loss function
- Simplest example: loss is "squared error"
 ▷ Data set D = {(x₁, y₁), (x₂, y₂), (x₃, y₃), ...}

$$L(\Theta) = \sum_{i} \left(f(x_i | \Theta) - y_i \right)^2$$

• Goal: choose Θ so as to minimize the value of the loss function

Classical Loss for Classification: Cross Entropy

- Assume $f(x, y | \Theta)$ outputs probability of y, given feature vector x
 - \triangleright Then cross-entropy loss at data point (x, y) defined as:

 $L(\Theta) = -\log f(x, y|\Theta)$

▷ For a data set $D = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$:

$$L(\Theta) = -\sum_{i} \log f(x_i, y_i | \Theta)$$

• Intuitively makes sense

- \triangleright You give prob of 1 to the "real" outcome, loss is zero
- \triangleright You give prob of 0 to the "real" outcome, loss is ∞

How to Minimize the Loss?

- What are the desired properties?
- To be useful for data science, opt framework should be
 - Easily applied to many types of opt problems
 - ▷ Scalable (easily built in MapReduce, for example)
 - \triangleright Fast (quick convergence)

Most Widely Used Opt Framework Is...

- For deep learning in particular...
 - \triangleright Gradient descent!
- What's the idea?
 - \triangleright GD is an iterative algorithm
 - \triangleright Goal: choose Θ^* to min $L(\Theta)$
 - \triangleright Tries to incrementally improve current solution
 - \triangleright At step i, Θ_i is current guess for Θ^*

AKA: Method of Steepest Descent

What's a Gradient?

• Gradient is the multi-dimensional analog to a derivative

- \triangleright If L(.) accepts a vector
- $\triangleright \nabla L$ is a vector-valued function
- \triangleright That is, accepts a vector Θ
- \triangleright Returns a vector...
- \triangleright whose *i*th entry is *i*th partial derivative evaluated at Θ
- \triangleright Points in direction of steepest ascent

Ex: Gradient of a 2-D Function

Gradient Descent

Basic algorithm:

```
\begin{array}{l} \Theta_{1} \leftarrow \text{non-stupid guess for } \Theta^{*}; \\ i \leftarrow 1; \\ \texttt{repeat} \quad \{ \\ \Theta_{i+1} \leftarrow \Theta_{i} - \lambda \nabla L(\Theta_{i}); \\ i \leftarrow i+1; \\ \} \text{ while } (|L(\Theta_{i}) - L(\Theta_{i-1})| > \epsilon) \end{array}
```

Gradient Descent

Basic algorithm:

 $\begin{array}{l} \Theta_{1} \leftarrow \text{non-stupid guess for } \Theta^{*}; \\ i \leftarrow 1; \\ \texttt{repeat} \quad \{ \\ \Theta_{i+1} \leftarrow \Theta_{i} - \lambda \nabla L(\Theta_{i}); \\ i \leftarrow i+1; \\ \} \text{ while } (|L(\Theta_{i}) - L(\Theta_{i-1})| > \epsilon) \end{array}$

- Here λ is the "learning rate"
 - ▷ Controls speed of convergence
- And $\nabla L(\Theta_i)$ is the gradient of L evaled at Θ_i

Stopping Condition

• Here we use

while
$$(|L(\Theta_i) - L(\Theta_{i-1})| > \epsilon)$$

• We keep going until the loss stops improving

 \triangleright That is, until we have "converged"

 \triangleright $|L(\Theta_i) - L(\Theta_{i-1})|$ is the difference in the loss across last two iterations

• Drawback: requires loss computation... can be expensive

The Learning Rate

Reconsider the algorithm:

```
\begin{array}{l} \Theta_{1} \leftarrow \text{non-stupid guess for } \Theta^{*}; \\ i \leftarrow 1; \\ \texttt{repeat} \quad \{ \\ \Theta_{i+1} \leftarrow \Theta_{i} - \lambda \nabla L(\Theta_{i}); \\ i \leftarrow i+1; \\ \} \text{ while } (|L(\Theta_{i}) - L(\Theta_{i-1})| > \epsilon) \end{array}
```

- How to choose λ ?
 - \triangleright Multiplier on the gradient $\nabla L(\Theta_i)$
 - \triangleright So controls the distance traveled at each step

Effect of Learning Rate

until convergence and trapping in local minima.

- Choice of learning rate super important
 - \triangleright Too small: many, many passes thru the data to converge
 - \triangleright Too large: oscillate into oblivion

Line Search

Best option (in terms of results) but most expensive:

- \triangleright Solve another mini-optimization problem at each iteration
- \triangleright That is, choose λ so as to minimize $L(\Theta_{i+1})$
- \triangleright At lest now, it's a 1-dimensional opt problem!
- \triangleright Called a "line search"

Line Search

- Sort of like a binary search
- But try to find a min, not a specific value
 - \triangleright Always have two bounds l and h on λ
 - \triangleright At each iteration, choose two l', h' within [l, h]
 - \triangleright Breaks line segment between l and h three ways (two ends and a middle)
 - \triangleright Evaluate loss at l', h'
 - \triangleright Cut off the worse of the two ends

Line Search

```
l \leftarrow 0;
h \leftarrow 999999;
while (h - l > \epsilon) do {
    h' \leftarrow l + \frac{1}{c}(h-l);
    l' \leftarrow h - \frac{\mathrm{i}}{c}(h-l);
    loss_h \leftarrow L(\Theta_i - h' \nabla L(\Theta_i));
    loss_l \leftarrow L(\Theta_i - l' \nabla L(\Theta_i));
    if (loss_h < loss_l) {
        l \leftarrow l';
    else
     h \leftarrow h';
     }
}
```

Day 1 AM, Chapter 3: Measuring Accuracy

- OK, so now we've built a model
- How do we know if it's good? We need a metric
- Simplest: % correct
 - \triangleright Pros and cons?

- Simplest: % correct
 - \triangleright Pros and cons?
 - \triangleright Pro: single number
 - \triangleright Pro: easy to understand
 - ▷ Con: Terrible with unbalanced classes (99% are "no"? Get 99% accuracy: say "no" all of the time)

- Can do better
- False positive and false negative rates
 - \triangleright More common in ML
 - ▷ False negative: (num we say are false that are actually true / num that are true)
 - \triangleright False positive: (num we say are true that are actually false / num that are false)
- Almost equivalent: Recall and precision
 - \triangleright More common in information ret.
 - ▷ Recall: (num we say are true that are actually true / num that are true)
 - \triangleright Precision: (num we say are true that are actually true / num we say are true)
- Pro: nice with imbalanced classes
- Con: single number important to order models from best to worst

Example: Classifying House Cats

False Positive and False Negative

• In our example:

- False negative: (num we say are false that are actually true / num that are true) = 3/12
- False positive: (num we say are true that are actually false / num that are false) = 4/13

Recall and Precision

- In our example:
 - \triangleright Recall or true positive rate: (num we say are true that are actually true / num that are true) = 9/12
 - \triangleright Precision: (num we say are true that are actually true / num we say are true) = 9/13

• Common metric: F_1 (say, "Eff-One")

 \triangleright Puts recall and precision into single number

$$F_1 = \frac{2 \times \text{ precision } \times \text{ recall}}{\text{precision } + \text{ recall}}$$

- \triangleright Pros and cons?
- \triangleright Pro: single number, more informative than accuracy
- \triangleright Con: Doesn't consider false positive/recall trade-off

ROC Plot

- Note: can usually increase recall by changing internal param in learned clarifier
 - \triangleright Ex: Simple linear classifier: if $\sum_j x_{i,j}r_j > c$, say "yes"
 - \triangleright Increase *c*: fewer false positives, lower recall
- ROC = "Receiver operating characteristic"
 - \triangleright Measures effect of increasing recall on false positive rate

ROC Plot

• ROC plots false positive

 $\triangleright\,$ num we say are true that are actually false / num that are false

• Vs true positive rate or recall

 $\triangleright\,$ num we say are true that are actually true / num that are true

• Random classifier will be on diagonal line

Why Random Classifier on Diagonal?

- If we randomly choose 20%, in reality 60% are true...
 - \triangleright FP: num we say are true that are actually false / num that are false
 - ▷ FP is $(20\% \times 40\% \times n)/(40\% \times n) = 20\%$
 - \triangleright TP: num we say are true that are actually true / num that are true
 - ▷ TP (recall) is $(20\% \times 60\% \times n)/(60\% \times n) = 20\%$
 - \triangleright Replace 20% with any faction f, will be at point (f, f)

AUC-ROC

- AUC-ROC = "Area under curve"
- Pure ROC is a plot, not a number
 - \triangleright AUC-ROC converts AUC plot to single number
 - \triangleright Usually gives single number from 0.5 to 1.0
 - $\triangleright~$ Less than 0.5 means "actively bad"
 - \triangleright Pros and cons?

Day 1 AM, Chapter 4: Over-Fitting

Over-Fitting

$\bullet\,$ Fundamental problem in data science/ML

- \triangleright Given enough hypotheses to check...
- \triangleright One of them is bound to be true

Miss America and Murder-By-Steam

Predicting the S&P 500

Predicting the S&P 500

Predicting the S&P 500

None of these Models Likely to Generalize

• That means:

- \triangleright They've learned the input data
- \triangleright Not any underlying truth
- \triangleright When deployed in the field, likely to fail

"Data Mining"

- Was originally a derogatory term used by stats
 - \triangleright Meant that you could always find something if you look hard enough

Why Do We Over-Fit?

- Let's dive into this a bit...
- In a nutshell, we have three main sources of error in SL
 - \triangleright "Bias": error from incorrect model assumptions
 - \triangleright "Variance": sensitivity of model to data
 - \triangleright "Uncontrollable Nastiness": weakness in link between x and $Y_{|x}$

Where Do These Errors Come From?

Expected squared error or any prediction is:

 $E[(Y_{|x} - \hat{f}(x))^2]$

• Here

- x is the data we use for prediction (ex: predict height from weight)
- Y produces the value we are trying to predict from x
 - $\triangleright Y_{|x}$ is a random variable, distribution conditioned on x
 - \triangleright Ex: height is random, distribution conditioned on weight
- $\hat{f}(.)$ is the model we are learning

 $\triangleright~$ Is a random variable because learned from observed data

Expanding This, We Have...

Expected squared error of any prediction is $E[(Y - \hat{f}(x))^2]$

 \triangleright Expanding:

$$\begin{split} E[(Y_{|x} - \hat{f}(x))^2] &= E[Y_{|x}^2 + \hat{f}^2(x) - 2Y_{|x}\hat{f}(x)] \\ &= E[Y_{|x}^2] + E[\hat{f}^2(x)] - E[2Y_{|x}\hat{f}(x)] \\ &= Var(Y_{|x}) + E^2[Y_{|x}] + E[\hat{f}^2(x)] - E[2Y_{|x}\hat{f}(x)] \\ &= Var(Y_{|x}) + E^2[Y_{|x}] + Var(\hat{f}(x)) + E^2[\hat{f}(x)] - E[2Y_{|x}\hat{f}(x)] \\ &= Var(Y_{|x}) + Var(\hat{f}(x)) + (E^2[Y_{|x}] - E[2Y_{|x}\hat{f}(x)] + E^2[\hat{f}(x)]) \\ &= Var(Y_{|x}) + Var(\hat{f}(x)) + Bias^2(\hat{f}(x)) \end{split}$$

So There Are Three Sources of Error

Since we have:

$$E[(Y_{|x} - \hat{f}(x))^2] = Var(Y_{|x}) + Var(\hat{f}(x)) + Bias^2(\hat{f}(x))$$

Means error of supervised learner is a sum of:

- \triangleright "Looseness" of relationship between x and $Y_{|x}$: $Var(Y_{|x})$ (not controllable)
- Sensitivity of the learner to the training data: $Var(\hat{f}(x))$
- ▷ Inability of the learner \hat{f} to learn the relationship between x and $Y_{|x}$: $Bias^2(\hat{f}(x))$

It is the sensitivity of the learner to the training data

that leads to over-fitting

In General, Is a Bias and Variance Trade-Off

In "real life"...

- \triangleright Exceedingly general models are a problem
- ▷ They are difficult to train (need tons of data)
- \triangleright Lacking lots of data, they learn the data set
- $\triangleright~$ So you constrain the model beforehand
- \triangleright Lowers $Var(\hat{f}(X))$ (damage due to over-fitting)
- ▷ But increases so-called "inductive bias" (bias introduced in the model you chose)
- \triangleright Best we can do: choose sweet spot where error is minimized

Regularization

• Massively important idea in ML

Regularization in ML

• Regularization

 \triangleright has come to mean any method to protect against over fitting

- Original meaning consistent with Occam's Razor
- The Razor stated simply: When you have many hypotheses that match observed facts equally well, the simplest one is preferred.
 - \triangleright Been around for a long time!
 - \triangleright Credited to William of Ockham (died 1347)
 - First stated explicitly by John Punch, 1639: "Entities must not be multiplied beyond necessity"

Regularization and the Razor

- Bias the algorithm towards a simpler model—lowers variance
 But if cost of low variance seems to be high inaccuracy, lower the bias
- But DO NOT have ML practitioner make the choice
 - $\triangleright~$ Give learning algorithm ability to choose complexity of model
- Done by adding a penalty term to objective function
 Penalizes model for complexity

Example: Logistic Regression

• Standard cross entropy loss function:

▷ For a data set $D = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$:

$$L(\Theta) = -\sum_{i} \log f(x_i, y_i | \Theta)$$

• Change loss function to:

$$L(\Theta) = \text{Penalty}(\Theta) - \sum_{i} \log f(x_i, y_i | \Theta)$$

- Here, $\operatorname{Penalty}(\Theta) = \sum_j \lambda \operatorname{abs}(r_j)$
 - \triangleright λ controls the magnitude of the penalty
 - $\triangleright\,$ Typically, try different values of λ during validation

The Lasso

- This is called "the lasso"
- More regularization in the afternoon session!!

Detecting Over-Fitting

- Even if you use regularization, over-fitting is a worry
- Important that we be able to detect it

The Sniff Test

• Detection method number 1: sniff test

- \triangleright Does the model "smell" right?
- \triangleright Example: Hospital re-admission prediction...
- \triangleright 1000 features, logistic regression model
- \triangleright Feature "Post-secondary education = True" weighted $5 \times$ as high as all others
- \triangleright Does that seem right?

Training/Testing/Validation

• Detection method number 2: independent validation and test sets

• Proper methodology

- ▷ Break data into three subsets:
- ▷ Training, validation, testing
- \triangleright Training: used to learn the model (min the loss)
- \triangleright Validation: used to see if the model is OK
- \triangleright Maybe params are wrong... or bad features, or wrong model
- \triangleright Use testing to predict accuracy in deployment
- > You often find test accuracy much lower than validation (over-fitting)

Training/Testing/Validation

• No cheating!

- ▷ Temptation: test results bad? Change params, train/validate again
- ▷ But test results become increasingly unreliable
- \triangleright My rule of thumb: you've got 3 chances to test
- \triangleright After that, test data is stale, you risk over-fitting
- \triangleright Are MHT correction methods, but these don't really apply...

Day 1 AM, Chapter 5: Unsupervised Learning

Learning From Unlabeled Data

Sometimes you have a data set without labels

- \triangleright (height, weight, age, shoe size) quadruples for this class
- $\triangleright~$ Register transactions from Wal-Mart
- \triangleright User-Movie rating matrix

The goal is simply to fit a model to the data... why?

- \triangleright Want to learn a model to help humans "understand" the data -or-
- \triangleright Want a model that presents a simplified version of the data -or-
- ▷ Want a model that can generate data

This is "unsupervised learning"

Classically Three Types of UL

(1) Clustering

- ▷ Grouping similar points together
- \triangleright Example: *k*-means

(2) Dimensionality Reduction

- $\triangleright~$ Map points to a lower-dimensional space
- \triangleright But preserve relationships among points
- ▷ Example: PCA

(3) Generative modeling

- $\triangleright~$ Learn how to generate data similar to observed data
- \triangleright Example: GANs

Briefly go over them now...

Clustering

- Classic/oldest algorithm is hierarchical clustering
- Basic Algorithm:

```
while num_clusters > 1 do

// D is the distance function

find clusters X, Y that minimize D(X,Y)

join them

end
```

Hierarchical Clustering

Dim Reduction: Curse of Dimensionality

Say we have 200 data points, two classes (100 points each) in our data set

- \triangleright Class one: dim 1 values from Normal(-2, 1)
- \triangleright Class two: dim 1 values from Normal(2, 1)
- \triangleright Dim 2 is Normal(0, 1) for all data points

Nearest neighbor works well!

- \triangleright Tried this in Python
- \triangleright 98/100 NNs of class one points (Euclidean) are also in class one
- \triangleright So 1NN classification works really well

What if We Add Meaningless Dims?

Rather than one noise dimension...

- \triangleright Move to nine noise dimensions (ten dims overall)
- \triangleright Tried this in Python
- \triangleright Now, 91/100 NNs of class one points are also in class one (not bad!)

But what about 99 noise dimensions?

- $\triangleright~$ Now only 75/100 NNs of class one points are also in class one
- \triangleright Not too great

With 999 noise dimensions, only 56/100 NNs are in same class

- $\triangleright~$ Note: a random classifier would expectedly get 50/100 right
- $\triangleright\,$ A 1NN classifier in this data would classify only 56/100 correctly
- \triangleright So not very good!

Classic Dimensionality Reduction Method: PCA

Basic idea: compute a set of orthogonal (perpendicular) basis vectors

- \triangleright Such that data are uncorrelated wrt those basis vectors
- $\triangleright~$ These are called the "principal components" of the data

Generative Modeling

- Idea: choose params of model to model likely to produce data
- Classic method: have a statistical model (ex: Normal)
 - \triangleright Choose model params to match data
 - \triangleright Use something like the "method of moments"
 - \triangleright Compute mean, variance of data
 - \triangleright Use those as model params
- Modern ML methods are much more sophisticated!!

Day 1 AM, Chapter 5: Features and Feature Engineering

What Do ML Models Take as Input?

Lots of focus in supervised learning on models

 $\triangleright~$ Linear regression, SVM, kNN, etc.

Almost always less important than feature engineering

- \triangleright That is, most simple models accept $x = \langle x_1, x_2, ..., x_m \rangle$
- ▷ Do not accept your raw data!
- ▶ How you "vectorize" is often the most important question!

Let's consider feature engineering thru an example...

Example Feature Selection

			🗎 web	mail.rice.edu	
← Reply ▼	➡ Forward ▼	🔊 Spam	Number of the second se	Delete	8
li Dear Friend Date: 02/05/201 From: danielkal	, 1 (03:29:00 PM CDT oja111@centrum.cz)			View Source
Text(1 KB) Hi Dear Frier I hereby writ Doctor just t anybody/famil	te this email to told me that i w ly member to tak	you with gr ill die in t e care of my	eat sorrow in hree months t vwealth despi	my heart an ime. I grew te my succes	nd heavy tears in my eyes simply because my up as an orphan and so sad that i don't have ss in life.
As a result o to you on tru	of this developm ust and fear nes	ent, I would s of God.	like to will	my money wi	hich is deposited in a financial institution
I implore you I authorize 2 go to charity will provide	u to use the mon 20% of the total / organizations you with other	ey judicious sum in your and orphanag information'	ly to build c favor as com homes. The s once you in	harity organ pensation an total money dicate your	nizations for the saints and the needy. nd entitlement While 80% of the money should in question is \$10.5million dollars and i willingness.
Best Regard.					

Feature Vectors via "Bag of Words"

Might build a dictionary

- \triangleright That is, map from each of m unique words in corpus
- \triangleright To a number from $\{1...m\}$
- \triangleright Then, each email is a vector $\langle 1, 0, 2, 1, 0, 0, \ldots \rangle$
- \triangleright *j*th entry is num occurrences of word *j*
- ▶ Problems?

TF-IDF

"Term Frequency"

 \triangleright Defined as:

 $TF = \frac{\text{num occurs of word in doc}}{\text{num words in doc}}$

"Inverse Document Frequency"

 \triangleright Defined as:

 $IDF = \log \frac{\text{num of docs}}{\text{num of docs having the word}}$

TD-IDF defined as $TF \times IDF$

N-Grams

Words in this doc might not be suspicious

Might be how they are put together

- ▷ "great sorrow"
- \triangleright "heavy tears"
- \triangleright "financial institution"
- \triangleright "fear ness"

Idea: also include all 2-grams, 3-grams, 4-grams, etc. as features

What Else?

We can include many other features

- \triangleright Country of sender
- \triangleright Number of words in email
- \triangleright Time of day sent
- \triangleright Was the email sent previously?
- \triangleright Recipient list disclosed?

Deep Learning and Feature Engineering

- For a long time, ML did poorly on perception tasks
 - \triangleright Vision
 - \triangleright Speech recognition
 - \triangleright Other forms of signal processing
- Why?
 - \triangleright Unclear how to produce good features
 - ▷ What are the features in an image? Colors?
- Deep NNs seem to learn their own features...

Feature Maps

This is Why DL Revolutionary For Perception

- But NOT the best for SL when good features available!
- Then, methods like random forests still preferred

Thank You!

• That's it for the AM session!