
ML Bootcamp Day 1, AM: Intro to ML

Chris Jermaine
Rice University

1



Plan For The Next Two Days

• This morning: Intro to ML
. What is ML?
. History
. ML success and failure
. Types of learning
. Loss and fitting
. Features and parameters

• This afternoon: Basic Methods
. Regression
. SVMs and kernels
. Decision trees
. Regularization
. Clustering and dimensionality reduction
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Plan For The Next Two Days

• Tomorrow morning: Deep learning
. Multi-layer perceptrons
. VAEs
. Backprop
. SGD
. CNNs and RNNs

• Tomorrow afternoon: Advanced deep learning and RL
. VAEs
. Generative adversarial networks
. Deep RL
. TensorFlow and PyTorch
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Day 1 AM, Chapter 1: A History of ML
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First, What is ML?

• A subset of “AI” (Artificial Intelligence)
. A more precise definition in a minute!

• AI is the task of programming an “intelligent agent”
. Able to solve novel problems
. Has emergent behavior
. Can do things not specifically programmed to do
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AI: Early-Early Years

• AI goes back a long time, to Leibniz, Hobbes, Descartes

• Leibniz “Calculus ratiocinator”
. 17th century
. Precursor to mathematical logic
. Imagines an inference engine able to reason
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AI: Early-Early Years

• Artificial Neural Networks
. First computational model proposed in 1943
. Inspired by the brain
. Warren McCulloch and Walter Pitts: ANs can perform logic
. Contemporary with ENIAC (UPenn, 1946)
. Minsky built SNARC (Stochastic Neural Analog Reinforcement Calculator) in 1951
. Early ANNs: compute model, not AI
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AI: Early Years

• AI: term invented by John McCarthy in 1956
. John McCarthy: Stanford computer scientist who invented Lisp
. Turing award winner in 1971
. “Dartmouth Summer Research Project on Artificial Intelligence”
. Summer-long brainstorming session
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AI: Early Years

• Early successes came quickly
. AI as search: goals, subgoals, backtracking
. Newell and Simon “General Problem Solver”
. Arthur Lee Samuel: Samuel Checkers-playing Program (at IBM, around 1960)
. Eliza: 1964-1966 MIT AI Lab
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AI: Early Years
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The Turing Test

• Eliza: first serious attempt to pass the “Turing Test”
. Based on Alan Turing’s 1950 paper “Computing Machinery and Intelligence”
. Turing Test: three “players”
. (1) Interrogator, (2) Computer, (3) Human
. Interrogator passes written questions to both
. Tries to determine which one is human

• Eliza was astonishing to people in the 1960’s
. Not close to passing the Turing Test!
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The Hype

• Herbert Simon in 1965:
. “Machines will be capable, within twenty years, of doing any work a man can do.”

• Marvin Minsky in 1967:
. “Within a generation ... the problem of creating ’artificial intelligence’ will substantially

be solved.”

• Marvin Minsky in 1970:
. “In from three to eight years we will have a machine with the general intelligence of an

average human being.”
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But All Was Not Well
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Winter Is Coming

Some ominous signs...

• Automatic Language Processing Advisory Committee, 1964-66
. Seven scientists, established by US government
. Looked to study the state of computational linguistics
. Critical of machine translation work to date

• Minsky and Papert: 1969 book “Perceptrons”
. Showed some limitations of common neural networks
. Seemed to kill off neural networks research for a long time

• “Artificial Intelligence: A General Survey” by James Lighthill, 1973
. “Formed the basis for the decision by the British government to end support for AI

research in all but two universities”
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Winter Is Here

• Speech Understanding Research program (DARPA) at CMU, other
locations
. Harpy: recognized more than 1000 words
. But had severe limitations
. Led to massive cutback in DARPA AI funding by 1974

• 1990–Death of the Fifth-Generation project
. In the 80’s, Japanese invested $400 million (1990 dollars)
. Not much to show for it
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The Rise of ML

• AI traditionally relied on smart programmers
. A program may be able to “reason”
. Could search for a better solution (ex: minimax)
. Could chain together rules

A→ B,B → C =⇒ A→ C

. But didn’t really learn

• That ended with the advent of ML
. AI: an intelligent agent; has emergent behavior
. ML: an AI that learns from retrospective data or experience
. ML is often statistical in nature
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ML: Important Developments

• 1986: Backpropagation
. Rumelhart, Hinton, Williams
. Use BP to train a NN with hidden layer(s) via gradient descent
. Forerunner of all modern “deep learning”

• 1989: Reinforcement Learning (Q-learning)
. Developed by Watkins
. Paradigm where ML learns via experience
. Not pre-collected data

• 1993: Association rule mining
. 1993 paper of Agrawal et al., IBM
. Example: {bread, butter} =⇒ {milk}
. Kicked off field of “data mining”
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ML: Important Developments

• 1995: Random Forests
. Ensemble decision tree method
. Still among the most accurate classifiers
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ML: Important Developments

• 1995: Invention of Support Vector Machines
. Cortes and Vapnik
. “Max margin” method
. Works well for large number features, little data
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ML: Important Developments

• 1997: Invention of LSTM
. Type of neural network
. Can “remember” state over sequential data
. Avoids “vanishing gradients” problem
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ML: Important Developments

• 2006: Netflix Prize
. Spurred research on recommender systems
. Netflix provided 100M movie ratings
. Took form of <user, movie, date of grade, grade>
. Learn to predict grade on new data
. Beat Netflix algorithm by 10%? Win $1M!
. Prize collected in 2009
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ML: Important Developments

• 2009: ImageNet
. Fei-Fei Li from Stanford University
. Data set that spurred vision research
. 14 million images, 20,000+ categories
. Best deep NNs are now better than people!
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ML: Important Developments

• 2013: Word2Vec
. Tomas Mikolov led a Google team
. Reads huge amount of text, learns word embedding
. Makes it easy to use other ML methods on text data
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Where Are We Today?

• There have been some amazing recent developments

• Lots of recent buzz: GPT-3
. 125-billion parameter language model
. Developed by OpenAI
. GPT = “Generative Pre-trained Transformer”
. Transformers are new class of big NN
. Learned on most of English available electronically
. 6 million Wikipedia docs: is less than 1% of training data!

• Reported results are amazing
. Compare with Eliza!
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GPT-3 Example
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Not Just Image Classification: Image Generation

• GANS: Generative Adversarial Networks
. Ian Goodfellow and his colleagues in 2014
. Two neural networks learn together:
. One to generate data
. One to recognize real from fake data
. Generator gets so good it can fool humans
. (This leads to “deep fakes”, unfortunately)
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Example: GANS
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Game Playing
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Few Games Remain Where Humans Can Beat
Machines

• Most modern ML game playing relies on reinforcement learning
. ML learns to solve a “Markov Decision Process”
. A game where the ML learns to traverse a graph
. Actions lead to stochastic rewards/transitions
. “Deep RL” allows a deep NN to learn to maximize reward

• RL-based ML algorithms have done amazing things
. AlphaGo: Go-playing ML algorithm
. March 2016: beat Lee Sodol (9-dan pro)
. 2017: beat Ke Kie, world number 1
. AlphaZero: trained only via self-play (no data)
. Beat AlphaGo 100-0
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Image Classification

• Not just useful for toy database (ImageNet)
. ML algorithms can out-perform human experts at important tasks
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Reading Low-Dose CT Scans

• “End-to-end lung cancer screening with three-dimensional deep
learning on low-dose chest computed tomography”
. Trained deep learning model on 42,290 CTs from 14,851 patients
. 578 developed biopsy-confirmed cancer in one year
. Tested on 6,716 cases (86 cancer positives)
. Deep learning model: ROC 94.4%
. Six radiologists: all performed worse
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What Is ML Bad At? Causation

• Key weakness: ML algorithms do correlation not causation
. Is grass necessary to identify the presence of a lion?
. Even a child would discount the grass...
. But ML algorithm may classify a lawn as a lion!

• One way to avoid this: learn in the “real-world” (ex: RL)
. But it can be tough to facilitate this
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What Is ML Bad At? Fairness

• ML algorithms are only as good as their data
. We want to use ML to help with hiring decisions
. Our company has always done a good job promoting men
. Most examples of high performers are men
. Gender is specifically excluded as a criteria
. ML algorithm can spot proxies for gender
. May still be biased towards hiring men
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Day 1 AM, Chapter 2: Supervised Learning
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ML: How Does It Work?

Foundation of modern ML: supervised learning

• One of the most fundamental problems in data science
. Given a bunch of (x, y) pairs
. Goal: learn how to predict value of y from x

. Classically, x is a feature vector

. Example: x is 〈age, income, gender〉

. Called “supervised” because have examples of correct labeling
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Supervised Learning Examples

Any task where we want to mimic existing labeling:
. Given an image, tell if has a cat or not
. Given a text EMR, label “breast cancer” or not
. Given a document (email) in a court case, figure which subjects relevant to
. Given information about a patient surgery, predict death
. Given head trauma patient info, predict ICP crisis
. Given an set of surgical vital signs, label “good surgery” or not
. Many others!
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Two Most Common Types of SL

• Classification and regression

• Classification:
. Outcome to predict is in {+1,−1} (“yes” or “no”)
. Ex: Given a text EMR, label “breast cancer” or not

• Regression:
. Outcome to predict is a real number
. Ex: Given an ad, predict number of clickthrus per hour
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Workhorse of Modern SL

• Linear regression
. From x, predict y as:

f(x|r) =
∑
j

xjrj

. 〈r1, r2, ..., rm〉 are called regression coefficients

. Note: this gives a real-valued output

• This is just one way to do SL

• You’ll see many others:
. kNN, support vector machines, random forests, etc.
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Extending LR to Classification

• Output of linear regression input into a logistic function
. From x, predict y as:

f(x|r) = (1 + e
−

∑
j xjrj)

−1

. Maps feature vector to a probability of true
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Most Modern SL is Optimization-Based

• Deep learning in particular follows this paradigm...

• The model f(x|Θ) we are trying to “learn” has a parameter set Θ

. Θ is list of regression coefs r1, r2, r3, etc. in LR

• Given a data set, we definite a loss function

• Simplest example: loss is “squared error”
. Data set D = {(x1, y1), (x2, y2), (x3, y3), ...}

L(Θ) =
∑
i

(f(xi|Θ)− yi)2

• Goal: choose Θ so as to minimize the value of the loss function
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Classical Loss for Classification: Cross Entropy

• Assume f(x, y|Θ) outputs probability of y, given feature vector x
. Then cross-entropy loss at data point (x, y) defined as:

L(Θ) = − log f(x, y|Θ)

. For a data set D = {(x1, y1), (x2, y2), (x3, y3), ...}:

L(Θ) = −
∑
i

log f(xi, yi|Θ)

• Intuitively makes sense
. You give prob of 1 to the “real” outcome, loss is zero
. You give prob of 0 to the “real” outcome, loss is∞
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How to Minimize the Loss?

• What are the desired properties?

• To be useful for data science, opt framework should be
. Easily applied to many types of opt problems
. Scalable (easily built in MapReduce, for example)
. Fast (quick convergence)
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Most Widely Used Opt Framework Is...

• For deep learning in particular...
. Gradient descent!

• What’s the idea?
. GD is an iterative algorithm
. Goal: choose Θ∗ to min L(Θ)

. Tries to incrementally improve current solution

. At step i, Θi is current guess for Θ∗
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AKA: Method of Steepest Descent
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What’s a Gradient?

• Gradient is the multi-dimensional analog to a derivative
. If L(.) accepts a vector
. ∇L is a vector-valued function
. That is, accepts a vector Θ

. Returns a vector...

. whose ith entry is ith partial derivative evaluated at Θ

. Points in direction of steepest ascent
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Ex: Gradient of a 2-D Function
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Gradient Descent

Basic algorithm:

Θ1 ← non-stupid guess for Θ∗;
i← 1;
repeat {

Θi+1 ← Θi − λ∇L(Θi);
i← i+ 1;

} while (|L(Θi)− L(Θi−1)| > ε)
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Gradient Descent

Basic algorithm:

Θ1 ← non-stupid guess for Θ∗;
i← 1;
repeat {

Θi+1 ← Θi − λ∇L(Θi);
i← i+ 1;

} while (|L(Θi)− L(Θi−1)| > ε)

• Here λ is the “learning rate”
. Controls speed of convergence

• And ∇L(Θi) is the gradient of L evaled at Θi
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Stopping Condition

• Here we use

while (|L(Θi)− L(Θi−1)| > ε)

• We keep going until the loss stops improving
. That is, until we have “converged”
. |L(Θi)− L(Θi−1)| is the difference in the loss across last two iterations

• Drawback: requires loss computation... can be expensive
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The Learning Rate

Reconsider the algorithm:

Θ1 ← non-stupid guess for Θ∗;
i← 1;
repeat {

Θi+1 ← Θi − λ∇L(Θi);
i← i+ 1;

} while (|L(Θi)− L(Θi−1)| > ε)

• How to choose λ?
. Multiplier on the gradient ∇L(Θi)

. So controls the distance traveled at each step
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Effect of Learning Rate

• Choice of learning rate super important
. Too small: many, many passes thru the data to converge
. Too large: oscillate into oblivion
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Line Search

Best option (in terms of results) but most expensive:
. Solve another mini-optimization problem at each iteration
. That is, choose λ so as to minimize L(Θi+1)

. At lest now, it’s a 1-dimensional opt problem!

. Called a “line search”
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Line Search

• Sort of like a binary search

• But try to find a min, not a specific value
. Always have two bounds l and h on λ
. At each iteration, choose two l′, h′ within [l, h]

. Breaks line segment between l and h three ways (two ends and a middle)

. Evaluate loss at l′, h′

. Cut off the worse of the two ends

Rice University: Intro to ML 53



Line Search
l← 0;
h← 999999;
while (h− l > ε) do {
h′ ← l + 1

c(h− l);
l′ ← h− 1

c(h− l);
lossh ← L(Θi − h′∇L(Θi));
lossl ← L(Θi − l′∇L(Θi));
if (lossh < lossl) {
l← l′;

else
h← h′;

}
}
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Day 1 AM, Chapter 3: Measuring Accuracy
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Measuring Classification Accuracy

• OK, so now we’ve built a model

• How do we know if it’s good? We need a metric

• Simplest: % correct
. Pros and cons?
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Measuring Classification Accuracy

• Simplest: % correct
. Pros and cons?
. Pro: single number
. Pro: easy to understand
. Con: Terrible with unbalanced classes (99% are “no”? Get 99% accuracy: say “no” all

of the time)
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Measuring Classification Accuracy

• Can do better

• False positive and false negative rates
. More common in ML
. False negative: (num we say are false that are actually true / num that are true)
. False positive: (num we say are true that are actually false / num that are false)

• Almost equivalent: Recall and precision
. More common in information ret.
. Recall: (num we say are true that are actually true / num that are true)
. Precision: (num we say are true that are actually true / num we say are true)

• Pro: nice with imbalanced classes

• Con: single number important to order models from best to worst
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Example: Classifying House Cats
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False Positive and False Negative

• In our example:
. False negative: (num we say are false that are actually true / num that are true)

= 3/12

. False positive: (num we say are true that are actually false / num that are false)
= 4/13
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Recall and Precision

• In our example:
. Recall or true positive rate: (num we say are true that are actually true / num that are

true) = 9/12

. Precision: (num we say are true that are actually true / num we say are true) = 9/13
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Measuring Classification Accuracy

• Common metric: F1 (say, “Eff-One”)
. Puts recall and precision into single number

F1 =
2× precision × recall

precision + recall

. Pros and cons?

. Pro: single number, more informative than accuracy

. Con: Doesn’t consider false positive/recall trade-off
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ROC Plot

• Note: can usually increase recall by changing internal param in
learned clarifier
. Ex: Simple linear classifier: if

∑
j xi,jrj > c, say “yes”

. Increase c: fewer false positives, lower recall

• ROC = “Receiver operating characteristic”
. Measures effect of increasing recall on false positive rate
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ROC Plot

• ROC plots false positive
. num we say are true that are actually false / num that are false

• Vs true positive rate or recall
. num we say are true that are actually true / num that are true

• Random classifier will be on diagonal line
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Why Random Classifier on Diagonal?

• If we randomly choose 20%, in reality 60% are true...
. FP: num we say are true that are actually false / num that are false
. FP is (20%× 40%× n)/(40%× n) = 20%

. TP: num we say are true that are actually true / num that are true

. TP (recall) is (20%× 60%× n)/(60%× n) = 20%

. Replace 20% with any faction f , will be at point (f, f)
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AUC-ROC

• AUC-ROC = “Area under curve”

• Pure ROC is a plot, not a number
. AUC-ROC converts AUC plot to single number
. Usually gives single number from 0.5 to 1.0
. Less than 0.5 means “actively bad”
. Pros and cons?
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Day 1 AM, Chapter 4: Over-Fitting
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Over-Fitting

• Fundamental problem in data science/ML
. Given enough hypotheses to check...
. One of them is bound to be true
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Miss America and Murder-By-Steam
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Predicting the S&P 500
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Predicting the S&P 500
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Predicting the S&P 500
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None of these Models Likely to Generalize

• That means:
. They’ve learned the input data
. Not any underlying truth
. When deployed in the field, likely to fail
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“Data Mining”

• Was originally a derogatory term used by stats
. Meant that you could always find something if you look hard enough
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Why Do We Over-Fit?

• Let’s dive into this a bit...

• In a nutshell, we have three main sources of error in SL
. “Bias”: error from incorrect model assumptions
. “Variance”: sensitivity of model to data
. “Uncontrollable Nastiness”: weakness in link between x and Y|x
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Where Do These Errors Come From?

Expected squared error or any prediction is:

E[(Y|x − f̂(x))2]

• Here
• x is the data we use for prediction (ex: predict height from weight)
• Y produces the value we are trying to predict from x

. Y|x is a random variable, distribution conditioned on x

. Ex: height is random, distribution conditioned on weight

• f̂(.) is the model we are learning
. Is a random variable because learned from observed data
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Expanding This, We Have...

Expected squared error of any prediction is E[(Y − f̂(x))2]

. Expanding:

E[(Y|x − f̂(x))
2
] = E[Y

2
|x + f̂

2
(x)− 2Y|xf̂(x)]

= E[Y
2
|x] + E[f̂

2
(x)]− E[2Y|xf̂(x)]

= V ar(Y|x) + E
2
[Y|x] + E[f̂

2
(x)]− E[2Y|xf̂(x)]

= V ar(Y|x) + E
2
[Y|x] + V ar(f̂(x)) + E

2
[f̂(x)]− E[2Y|xf̂(x)]

= V ar(Y|x) + V ar(f̂(x)) + (E
2
[Y|x]− E[2Y|xf̂(x)] + E

2
[f̂(x)])

= V ar(Y|x) + V ar(f̂(x)) + Bias
2
(f̂(x))
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So There Are Three Sources of Error

Since we have:

E[(Y|x − f̂(x))2] = V ar(Y|x) + V ar(f̂(x)) +Bias2(f̂(x))

Means error of supervised learner is a sum of:
. “Looseness” of relationship between x and Y|x: V ar(Y|x) (not controllable)

. Sensitivity of the learner to the training data: V ar(f̂(x))

. Inability of the learner f̂ to learn the relationship between x and Y|x: Bias2(f̂(x))

It is the sensitivity of the learner to the training data

that leads to over-fitting
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In General, Is a Bias and Variance Trade-Off

In “real life”...
. Exceedingly general models are a problem
. They are difficult to train (need tons of data)
. Lacking lots of data, they learn the data set
. So you constrain the model beforehand
. Lowers V ar(f̂(X)) (damage due to over-fitting)
. But increases so-called “inductive bias” (bias introduced in the model you chose)
. Best we can do: choose sweet spot where error is minimized
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Regularization

• Massively important idea in ML
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Regularization in ML

• Regularization
. has come to mean any method to protect against over fitting

• Original meaning consistent with Occam’s Razor

• The Razor stated simply: When you have many hypotheses that
match observed facts equally well, the simplest one is preferred.
. Been around for a long time!
. Credited to William of Ockham (died 1347)
. First stated explicitly by John Punch, 1639: “Entities must not be multiplied beyond

necessity”
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Regularization and the Razor

• Bias the algorithm towards a simpler model—lowers variance
. But if cost of low variance seems to be high inaccuracy, lower the bias

• But DO NOT have ML practitioner make the choice
. Give learning algorithm ability to choose complexity of model

• Done by adding a penalty term to objective function
. Penalizes model for complexity
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Example: Logistic Regression

• Standard cross entropy loss function:
. For a data set D = {(x1, y1), (x2, y2), (x3, y3), ...}:

L(Θ) = −
∑
i

log f(xi, yi|Θ)

• Change loss function to:

L(Θ) = Penalty(Θ)−
∑
i

log f(xi, yi|Θ)

• Here, Penalty(Θ) =
∑
j λabs(rj)

. λ controls the magnitude of the penalty

. Typically, try different values of λ during validation
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The Lasso

• This is called “the lasso”

• More regularization in the afternoon session!!
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Detecting Over-Fitting

• Even if you use regularization, over-fitting is a worry

• Important that we be able to detect it
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The Sniff Test

• Detection method number 1: sniff test
. Does the model “smell” right?
. Example: Hospital re-admission prediction...
. 1000 features, logistic regression model
. Feature “Post-secondary education = True” weighted 5× as high as all others
. Does that seem right?
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Training/Testing/Validation

• Detection method number 2: independent validation and test sets

• Proper methodology
. Break data into three subsets:
. Training, validation, testing
. Training: used to learn the model (min the loss)
. Validation: used to see if the model is OK
. Maybe params are wrong... or bad features, or wrong model
. Use testing to predict accuracy in deployment
. You often find test accuracy much lower than validation (over-fitting)
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Training/Testing/Validation

• No cheating!
. Temptation: test results bad? Change params, train/validate again
. But test results become increasingly unreliable
. My rule of thumb: you’ve got 3 chances to test
. After that, test data is stale, you risk over-fitting
. Are MHT correction methods, but these don’t really apply...
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Day 1 AM, Chapter 5: Unsupervised Learning
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Learning From Unlabeled Data

Sometimes you have a data set without labels
. (height, weight, age, shoe size) quadruples for this class
. Register transactions from Wal-Mart
. User-Movie rating matrix

The goal is simply to fit a model to the data... why?
. Want to learn a model to help humans “understand” the data -or-
. Want a model that presents a simplified version of the data -or-
. Want a model that can generate data

This is “unsupervised learning”
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Classically Three Types of UL

(1) Clustering
. Grouping similar points together
. Example: k-means

(2) Dimensionality Reduction
. Map points to a lower-dimensional space
. But preserve relationships among points
. Example: PCA

(3) Generative modeling
. Learn how to generate data similar to observed data
. Example: GANs

Briefly go over them now...
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Clustering

• Classic/oldest algorithm is hierarchical clustering

• Basic Algorithm:

while num_clusters > 1 do
// D is the distance function
find clusters X, Y that minimize D(X,Y )
join them

end
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Hierarchical Clustering
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Dim Reduction: Curse of Dimensionality

Say we have 200 data points, two classes (100 points each) in our data set
. Class one: dim 1 values from Normal(−2, 1)

. Class two: dim 1 values from Normal(2, 1)

. Dim 2 is Normal(0, 1) for all data points

Nearest neighbor works well!
. Tried this in Python
. 98/100 NNs of class one points (Euclidean) are also in class one
. So 1NN classification works really well
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What if We Add Meaningless Dims?

Rather than one noise dimension...
. Move to nine noise dimensions (ten dims overall)
. Tried this in Python
. Now, 91/100 NNs of class one points are also in class one (not bad!)

But what about 99 noise dimensions?
. Now only 75/100 NNs of class one points are also in class one
. Not too great

With 999 noise dimensions, only 56/100 NNs are in same class
. Note: a random classifier would expectedly get 50/100 right
. A 1NN classifier in this data would classify only 56/100 correctly
. So not very good!
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Classic Dimensionality Reduction Method: PCA

Basic idea: compute a set of orthogonal (perpendicular) basis vectors
. Such that data are uncorrelated wrt those basis vectors
. These are called the “principal components” of the data
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Generative Modeling

• Idea: choose params of model to model likely to produce data

• Classic method: have a statistical model (ex: Normal)
. Choose model params to match data
. Use something like the “method of moments”
. Compute mean, variance of data
. Use those as model params

• Modern ML methods are much more sophisticated!!
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Day 1 AM, Chapter 5: Features and Feature
Engineering
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What Do ML Models Take as Input?

Lots of focus in supervised learning on models
. Linear regression, SVM, kNN, etc.

Almost always less important than feature engineering
. That is, most simple models accept x = 〈x1, x2, ..., xm〉
. Do not accept your raw data!
. How you “vectorize” is often the most important question!

Let’s consider feature engineering thru an example...
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Example Feature Selection
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Feature Vectors via “Bag of Words”

Might build a dictionary
. That is, map from each of m unique words in corpus
. To a number from {1...m}
. Then, each email is a vector 〈1, 0, 2, 1, 0, 0, ...〉
. jth entry is num occurrences of word j
. Problems?
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TF-IDF

“Term Frequency”
. Defined as:

TF =
num occurs of word in doc

num words in doc

“Inverse Document Frequency”
. Defined as:

IDF = log
num of docs

num of docs having the word

TD-IDF defined as TF × IDF
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N-Grams

Words in this doc might not be suspicious

Might be how they are put together
. “great sorrow”
. “heavy tears”
. “financial institution”
. “fear ness”

Idea: also include all 2-grams, 3-grams, 4-grams, etc. as features
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What Else?

We can include many other features
. Country of sender
. Number of words in email
. Time of day sent
. Was the email sent previously?
. Recipient list disclosed?
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Deep Learning and Feature Engineering

• For a long time, ML did poorly on perception tasks
. Vision
. Speech recognition
. Other forms of signal processing

• Why?
. Unclear how to produce good features
. What are the features in an image? Colors?

• Deep NNs seem to learn their own features...
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Feature Maps

106



This is Why DL Revolutionary For Perception

• But NOT the best for SL when good features available!

• Then, methods like random forests still preferred
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Thank You!

• That’s it for the AM session!
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