

Prof. Chris Jermaine cmj4@cs.rice.edu



#### Yet Another Linked Structure

- One very common linked structure is a "B-Tree"
- It is a very fast way to implement a map:
  - O(lg (n)) finds
  - $-O(\lg(n))$  inserts
  - $O(\lg (n) + m)$  "range" finds
- Since nodes can be arbitrarily large (n-ary, not binary tree)
  - B-trees were originally used as file-based structures
  - Each node was the size of a disk block
- But now, B-trees are arguably faster than BSTs in RAM, too
  - Since BSTs are binary, they often don't fill up a cache line
  - A B-tree with node size close to cache line size is very, very fast

#### **B-Trees**

- Have two node types:
  - "Internal" nodes
  - "Leaf" nodes
- Internal nodes
  - Store a list of (at most)  $n_{internal}$  (key, ptr) pairs
  - Here, "ptr" or "pointer" might be a Java reference, or a file name and byte offset, or an IP address plus a process ID plus a memory address, or...
  - "ptr" refers to another B-tree whose root can be found at that location
- Leaf nodes
  - Store a list of (at most)  $n_{leaf}$  (key, data) pairs
  - Note difference: no data in internal nodes, just keys!

#### **B-Tree Invariants**

- The tree is totally "height balanced"
  - Every "pointer" in a B-Tree node
  - Refers to a tree of exactly the same height
  - So every path from root to leaf in tree is same length
- The tree is ordered
  - Consider the  $(\text{key}_i, \text{ptr}_i)$  pair at position *i* in an internal node
  - Every data item in the tree referred to by  $ptr_i$  (for  $j \le i$ ) must have a key  $\le key_i$
- The tree is at least half full
  - Every internal node has at least  $(n_{internal} / 2)$  pairs
  - Every leaf node has at least  $(n_{leaf}/2)$  pairs
  - Except for root, which may have just two pairs





• Say we want to add a (27, data) pair...





• Say we want to add a (16, data) pair...



- Say we want to add a (16, data) pair...
  - Oops! The appropriate leaf node is already full



• So... we perform a leaf node "split"

— Step 1: sort all pairs using the keys, and partition via the median





- So...
  - Step 1: sort all pairs using the keys, and partition via the median
  - Step 2: put lower half into new leaf node





- So...
  - Step 1: sort all pairs using the keys, and partition via the median
  - Step 2: put lower half into new leaf node
  - Step 3: slide (key, pointer) pairs in parent over one slot to make room for new pair



- So...
  - Step 1: sort all pairs using the keys, and partition via the median
  - Step 2: put lower half into new leaf node
  - Step 3: slide (key, pointer) pairs in parent over one slot to make room for new pair
  - Step 4: add the pair (median, ptr to new node) to the parent... DONE!



• Now we add a (22, data) pair... easy!







• What happens when a (2, data) pair is added?



- What happens when a (2, data) pair is added?
  - Same steps as before, except that we can't slide everything in parent over



2, (5) 16, inf

- So we need to split the internal node
  - Step 1: sort and partition via the median



- So we need to split the internal node
  - Step 1: sort and partition via the median
  - Step 2: put lower half into a new internal node



- So we need to split the internal node
  - Step 1: sort and partition via the median
  - Step 2: put lower half into a new internal node
  - Step 3: since we split the root, create a new root w. two (key, ptr) pairs... first pair
    - is (median, ptr to new node)... second pair is (inf, ptr to split node) DONE!





• Let's make this tree look a little nicer...



• Let's make this tree look a little nicer...

— and then add a (4, data) pair





- Let's make this tree look a little nicer...
  - and then add a (4, data) pair
  - and then a (13, data) pair, which causes a split...



- Let's make this tree look a little nicer...
  - and then add a (4, data) pair
  - and then a (13, data) pair, which causes a split...



- Let's make this tree look a little nicer...
  - and then add a (4, data) pair
  - and then a (13, data) pair, which causes a split... and an addition to the parent





• Finally, add a (24, data) pair

— this causes a split at the leaf

26



- Finally, add a (24, data) pair
  - this causes a split at the leaf
  - which in turn causes a split at the parent



- Finally, add a (24, data) pair
  - this causes a split at the leaf
  - which in turn causes a split at the parent
  - which in turn causes an insert into the parent's parent



• Here's a worthwhile exercise to do on your own:

— What would happen if we then added a (3, data) pair, then a (0, data) pair?



## Some Final Issues

- How to do point finds?
  - Recursively search child trees whose range could possibly intersect query point
  - Note: if we allow repeated key vals, need to go both directions when query key appears in an internal node!
- How to do range finds?
  - Recursively search child trees whose range could possibly intersect query range
- How to do deletes?
  - Just go to leaf with (key, data) pair you want to delete and remove it
  - Can "collapse" nodes if under-full, but long ago people decided this is a bad idea



### Questions?

